These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Introduction to mammalian genome special issue: the combined role of genetics and environment relevant to human disease outcomes. Rusyn I; Kleeberger SR; McAllister KA; French JE; Svenson KL Mamm Genome; 2018 Feb; 29(1-2):1-4. PubMed ID: 29460122 [No Abstract] [Full Text] [Related]
9. Evolution of CRISPR towards accurate and efficient mammal genome engineering. Ryu SM; Hur JW; Kim K BMB Rep; 2019 Aug; 52(8):475-481. PubMed ID: 31234957 [TBL] [Abstract][Full Text] [Related]
10. The history of genome editing: advances from the interface of chemistry & biology. Matsumoto D; Nomura W Chem Commun (Camb); 2023 Jun; 59(50):7676-7684. PubMed ID: 37259535 [TBL] [Abstract][Full Text] [Related]
11. Prime editing in plants and mammalian cells: Mechanism, achievements, limitations, and future prospects. Hillary VE; Ceasar SA Bioessays; 2022 Sep; 44(9):e2200032. PubMed ID: 35750651 [TBL] [Abstract][Full Text] [Related]
12. Double-Stranded Break Repair in Mammalian Cells and Precise Genome Editing. Ali A; Xiao W; Babar ME; Bi Y Genes (Basel); 2022 Apr; 13(5):. PubMed ID: 35627122 [TBL] [Abstract][Full Text] [Related]
13. Multiplex base editing to convert TAG into TAA codons in the human genome. Chen Y; Hysolli E; Chen A; Casper S; Liu S; Yang K; Liu C; Church G Nat Commun; 2022 Aug; 13(1):4482. PubMed ID: 35918324 [TBL] [Abstract][Full Text] [Related]
14. Large-scale DNA editing of retrotransposons accelerates mammalian genome evolution. Carmi S; Church GM; Levanon EY Nat Commun; 2011 Nov; 2():519. PubMed ID: 22044998 [TBL] [Abstract][Full Text] [Related]
15. Homology-based repair induced by CRISPR-Cas nucleases in mammalian embryo genome editing. Zhang X; Li T; Ou J; Huang J; Liang P Protein Cell; 2022 May; 13(5):316-335. PubMed ID: 33945139 [TBL] [Abstract][Full Text] [Related]
16. Development and Applications of CRISPR/Cas9-Based Genome Editing in Mu Y; Zhang C; Li T; Jin FJ; Sung YJ; Oh HM; Lee HG; Jin L Int J Mol Sci; 2022 Oct; 23(21):. PubMed ID: 36361647 [No Abstract] [Full Text] [Related]
17. Enhancing Animal Disease Resistance, Production Efficiency, and Welfare through Precise Genome Editing. Liu Z; Wu T; Xiang G; Wang H; Wang B; Feng Z; Mu Y; Li K Int J Mol Sci; 2022 Jun; 23(13):. PubMed ID: 35806334 [TBL] [Abstract][Full Text] [Related]
18. Increasing Genome Editing Efficiency of Cas9 Nucleases by the Simultaneous Use of Transcriptional Activators and Histone Acetyltransferase Activator. Liu J; Li B; Yang L; Ren N; Xu M; Huang Q CRISPR J; 2022 Dec; 5(6):854-867. PubMed ID: 36374245 [TBL] [Abstract][Full Text] [Related]
19. Applying CRISPR-Cas9 Genome Editing to Study Genes Involved in Peroxisome Biogenesis or Peroxisomal Functions. Chornyi S; Koster J; Waterham HR Methods Mol Biol; 2023; 2643():233-245. PubMed ID: 36952190 [TBL] [Abstract][Full Text] [Related]
20. Recent Advances in Therapeutic Genome Editing in China. Yang Y; Wang Q; Li Q; Men K; He Z; Deng H; Ji W; Wei Y Hum Gene Ther; 2018 Feb; 29(2):136-145. PubMed ID: 29446996 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]