These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
293 related articles for article (PubMed ID: 28712133)
1. Aquatic export of young dissolved and gaseous carbon from a pristine boreal fen: Implications for peat carbon stock stability. Campeau A; Bishop KH; Billett MF; Garnett MH; Laudon H; Leach JA; Nilsson MB; Öquist MG; Wallin MB Glob Chang Biol; 2017 Dec; 23(12):5523-5536. PubMed ID: 28712133 [TBL] [Abstract][Full Text] [Related]
2. Deep peat warming increases surface methane and carbon dioxide emissions in a black spruce-dominated ombrotrophic bog. Gill AL; Giasson MA; Yu R; Finzi AC Glob Chang Biol; 2017 Dec; 23(12):5398-5411. PubMed ID: 28675635 [TBL] [Abstract][Full Text] [Related]
3. Effect of catchment characteristics on aquatic carbon export from a boreal catchment and its importance in regional carbon cycling. Huotari J; Nykänen H; Forsius M; Arvola L Glob Chang Biol; 2013 Dec; 19(12):3607-20. PubMed ID: 23893508 [TBL] [Abstract][Full Text] [Related]
4. Ecosystem carbon response of an Arctic peatland to simulated permafrost thaw. Voigt C; Marushchak ME; Mastepanov M; Lamprecht RE; Christensen TR; Dorodnikov M; Jackowicz-Korczyński M; Lindgren A; Lohila A; Nykänen H; Oinonen M; Oksanen T; Palonen V; Treat CC; Martikainen PJ; Biasi C Glob Chang Biol; 2019 May; 25(5):1746-1764. PubMed ID: 30681758 [TBL] [Abstract][Full Text] [Related]
5. A drained nutrient-poor peatland forest in boreal Sweden constitutes a net carbon sink after integrating terrestrial and aquatic fluxes. Tong CHM; Noumonvi KD; Ratcliffe J; Laudon H; Järveoja J; Drott A; Nilsson MB; Peichl M Glob Chang Biol; 2024 Mar; 30(3):e17246. PubMed ID: 38501699 [TBL] [Abstract][Full Text] [Related]
6. Permafrost conditions in peatlands regulate magnitude, timing, and chemical composition of catchment dissolved organic carbon export. Olefeldt D; Roulet NT Glob Chang Biol; 2014 Oct; 20(10):3122-36. PubMed ID: 24753046 [TBL] [Abstract][Full Text] [Related]
8. Role of recent climate change on carbon sequestration in peatland systems. Lunt PH; Fyfe RM; Tappin AD Sci Total Environ; 2019 Jun; 667():348-358. PubMed ID: 30833238 [TBL] [Abstract][Full Text] [Related]
9. Distinct Anaerobic Bacterial Consumers of Cellobiose-Derived Carbon in Boreal Fens with Different CO2/CH4 Production Ratios. Juottonen H; Eiler A; Biasi C; Tuittila ES; Yrjälä K; Fritze H Appl Environ Microbiol; 2017 Feb; 83(4):. PubMed ID: 27913414 [TBL] [Abstract][Full Text] [Related]
10. Carbon dioxide and methane fluxes in drained tropical peat before and after hydrological restoration. Jauhiainen J; Limin S; Silvennoinen H; Vasander H Ecology; 2008 Dec; 89(12):3503-14. PubMed ID: 19137955 [TBL] [Abstract][Full Text] [Related]
11. Gaseous carbon dioxide and methane, as well as dissolved organic carbon losses from a small temperate wetland under a changing climate. Clair TA; Arp P; Moore TR; Dalva M; Meng FR Environ Pollut; 2002; 116 Suppl 1():S143-8. PubMed ID: 11833902 [TBL] [Abstract][Full Text] [Related]
13. Identifying the role of environmental drivers in organic carbon export from a forested peat catchment. Ryder E; de Eyto E; Dillane M; Poole R; Jennings E Sci Total Environ; 2014 Aug; 490():28-36. PubMed ID: 24840277 [TBL] [Abstract][Full Text] [Related]
14. Annual variability in the radiocarbon age and source of dissolved CO2 in a peatland stream. Garnett MH; Dinsmore KJ; Billett MF Sci Total Environ; 2012 Jun; 427-428():277-85. PubMed ID: 22542303 [TBL] [Abstract][Full Text] [Related]
15. Anaerobic methane oxidation is quantitatively important in deeper peat layers of boreal peatlands: Evidence from anaerobic incubations, in situ stable isotopes depth profiles, and microbial communities. Sabrekov AF; Semenov MV; Terentieva IE; Krasnov GS; Kharitonov SL; Glagolev MV; Litti YV Sci Total Environ; 2024 Mar; 916():170213. PubMed ID: 38278226 [TBL] [Abstract][Full Text] [Related]
16. Agricultural peatland restoration: effects of land-use change on greenhouse gas (CO2 and CH4) fluxes in the Sacramento-San Joaquin Delta. Knox SH; Sturtevant C; Matthes JH; Koteen L; Verfaillie J; Baldocchi D Glob Chang Biol; 2015 Feb; 21(2):750-65. PubMed ID: 25229180 [TBL] [Abstract][Full Text] [Related]
17. The Net Landscape Carbon Balance-Integrating terrestrial and aquatic carbon fluxes in a managed boreal forest landscape in Sweden. Chi J; Nilsson MB; Laudon H; Lindroth A; Wallerman J; Fransson JES; Kljun N; Lundmark T; Ottosson Löfvenius M; Peichl M Glob Chang Biol; 2020 Apr; 26(4):2353-2367. PubMed ID: 31912589 [TBL] [Abstract][Full Text] [Related]
18. Impact of winter roads on boreal peatland carbon exchange. Strack M; Softa D; Bird M; Xu B Glob Chang Biol; 2018 Jan; 24(1):e201-e212. PubMed ID: 28755391 [TBL] [Abstract][Full Text] [Related]
19. Post-fire carbon dynamics in the tropical peat swamp forests of Brunei reveal long-term elevated CH Lupascu M; Akhtar H; Smith TEL; Sukri RS Glob Chang Biol; 2020 Sep; 26(9):5125-5145. PubMed ID: 32475055 [TBL] [Abstract][Full Text] [Related]
20. Potential for long-term transfer of dissolved organic carbon from riparian zones to streams in boreal catchments. Ledesma JL; Grabs T; Bishop KH; Schiff SL; Köhler SJ Glob Chang Biol; 2015 Aug; 21(8):2963-79. PubMed ID: 25611952 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]