These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

284 related articles for article (PubMed ID: 28712288)

  • 21. Hyperconjugative Aromaticity and Antiaromaticity Control the Reactivities and π-Facial Stereoselectivities of 5-Substituted Cyclopentadiene Diels-Alder Cycloadditions.
    Levandowski BJ; Zou L; Houk KN
    J Org Chem; 2018 Dec; 83(23):14658-14666. PubMed ID: 30395708
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Origin of Orthogonality of Strain-Promoted Click Reactions.
    Wagner JA; Mercadante D; Nikić I; Lemke EA; Gräter F
    Chemistry; 2015 Aug; 21(35):12431-5. PubMed ID: 26178299
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Transition state distortion energies correlate with activation energies of 1,4-dihydrogenations and Diels-Alder cycloadditions of aromatic molecules.
    Hayden AE; Houk KN
    J Am Chem Soc; 2009 Mar; 131(11):4084-9. PubMed ID: 19256544
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Theoretical Study of Endo Selectivity in the Diels-Alder Reactions between Butadienes and Cyclopropene.
    Imade M; Hirao H; Omoto K; Fujimoto H
    J Org Chem; 1999 Sep; 64(18):6697-6701. PubMed ID: 11674673
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Impact of C=C/B-N Replacement on the Diels-Alder Reactivity of Curved Polycyclic Aromatic Hydrocarbons.
    García-Rodeja Y; Fernández I
    Chemistry; 2019 Jul; 25(41):9771-9779. PubMed ID: 31149750
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Structural Distortion of Cycloalkynes Influences Cycloaddition Rates both by Strain and Interaction Energies.
    Hamlin TA; Levandowski BJ; Narsaria AK; Houk KN; Bickelhaupt FM
    Chemistry; 2019 May; 25(25):6342-6348. PubMed ID: 30779472
    [TBL] [Abstract][Full Text] [Related]  

  • 27. How Oriented External Electric Fields Modulate Reactivity.
    Yu S; Vermeeren P; Hamlin TA; Bickelhaupt FM
    Chemistry; 2021 Mar; 27(18):5683-5693. PubMed ID: 33289179
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Substituent Effects in Bioorthogonal Diels-Alder Reactions of 1,2,4,5-Tetrazines.
    Houszka N; Mikula H; Svatunek D
    Chemistry; 2023 May; 29(29):e202300345. PubMed ID: 36853623
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Cycloaddition Reactivities Analyzed by Energy Decomposition Analyses and the Frontier Molecular Orbital Model.
    Sengupta A; Li B; Svatunek D; Liu F; Houk KN
    Acc Chem Res; 2022 Sep; 55(17):2467-2479. PubMed ID: 36007242
    [TBL] [Abstract][Full Text] [Related]  

  • 30. How Lewis Acids Catalyze Diels-Alder Reactions.
    Vermeeren P; Hamlin TA; Fernández I; Bickelhaupt FM
    Angew Chem Int Ed Engl; 2020 Apr; 59(15):6201-6206. PubMed ID: 31944503
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Diels-Alder Reactivity of Allenylboronic Acid Pinacol Ester and Related Dienophiles: Mechanistic Studies and Distortion/Interaction-Activation Strain Model Analysis.
    Labadie N; Pellegrinet SC
    J Org Chem; 2022 Dec; 87(24):16776-16784. PubMed ID: 36440689
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Catching up with tetrazines: coordination of Re(I) to 1,2,4-triazine facilitates an inverse electron demand Diels-Alder reaction with strained alkynes to a greater extent than in corresponding 1,2,4,5-tetrazines.
    Sims M; Kyriakou S; Matthews A; Deary ME; Kozhevnikov VN
    Dalton Trans; 2023 Aug; 52(31):10927-10932. PubMed ID: 37489645
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Origin of the "endo rule" in Diels-Alder reactions.
    Fernández I; Bickelhaupt FM
    J Comput Chem; 2014 Feb; 35(5):371-6. PubMed ID: 24449044
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Reactivity and regioselectivity in 1,3-dipolar cycloadditions of azides to strained alkynes and alkenes: a computational study.
    Schoenebeck F; Ess DH; Jones GO; Houk KN
    J Am Chem Soc; 2009 Jun; 131(23):8121-33. PubMed ID: 19459632
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Accurate prediction of rate constants of Diels-Alder reactions and application to design of Diels-Alder ligation.
    Tang SY; Shi J; Guo QX
    Org Biomol Chem; 2012 Apr; 10(13):2673-82. PubMed ID: 22370563
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Origin of rate enhancement and asynchronicity in iminium catalyzed Diels-Alder reactions.
    Vermeeren P; Hamlin TA; Fernández I; Bickelhaupt FM
    Chem Sci; 2020 Jul; 11(31):8105-8112. PubMed ID: 34094173
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Reactivity of Single-Walled Carbon Nanotubes in the Diels-Alder Cycloaddition Reaction: Distortion-Interaction Analysis along the Reaction Pathway.
    Li Y; Osuna S; Garcia-Borràs M; Qi X; Liu S; Houk KN; Lan Y
    Chemistry; 2016 Aug; 22(36):12819-24. PubMed ID: 27465519
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Factors Controlling the Reactivity of Strained-Alkyne Embedded Cycloparaphenylenes.
    García-Rodeja Y; Fernández I
    J Org Chem; 2019 Apr; 84(7):4330-4337. PubMed ID: 30848908
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Distortion-Controlled Reactivity and Molecular Dynamics of Dehydro-Diels-Alder Reactions.
    Yu P; Yang Z; Liang Y; Hong X; Li Y; Houk KN
    J Am Chem Soc; 2016 Jul; 138(26):8247-52. PubMed ID: 27286801
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Dual Activation of Aromatic Diels-Alder Reactions.
    Narsaria AK; Hamlin TA; Lammertsma K; Bickelhaupt FM
    Chemistry; 2019 Jul; 25(42):9902-9912. PubMed ID: 31111976
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.