These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 28712337)

  • 1. Overall effect of carbon production and nutrient release in sludge holding tank on mainstream biological nutrient removal efficiency.
    Jabari P; Yuan Q; Oleszkiewicz JA
    Environ Technol; 2018 Sep; 39(18):2390-2410. PubMed ID: 28712337
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Potential of hydrolysis of particulate COD in extended anaerobic conditions to enhance biological phosphorous removal.
    Jabari P; Yuan Q; Oleszkiewicz JA
    Biotechnol Bioeng; 2016 Nov; 113(11):2377-85. PubMed ID: 27144731
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Upflow anaerobic sludge blanket reactor--a review.
    Bal AS; Dhagat NN
    Indian J Environ Health; 2001 Apr; 43(2):1-82. PubMed ID: 12397675
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparison between disintegrated and fermented sewage sludge for production of a carbon source suitable for biological nutrient removal.
    Soares A; Kampas P; Maillard S; Wood E; Brigg J; Tillotson M; Parsons SA; Cartmell E
    J Hazard Mater; 2010 Mar; 175(1-3):733-9. PubMed ID: 19932559
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evaluation of WAS reduction efficiency using kinetic parameters in pilot-scale SBR operated with anaerobic sludge holding tank.
    Nam DH; Kang KH
    Water Sci Technol; 2013; 67(12):2838-44. PubMed ID: 23787326
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Pilot-scale waste activated sludge alkaline fermentation, fermentation liquid separation, and application of fermentation liquid to improve biological nutrient removal.
    Li X; Chen H; Hu L; Yu L; Chen Y; Gu G
    Environ Sci Technol; 2011 Mar; 45(5):1834-9. PubMed ID: 21280571
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enhancement of phosphorus removal in a low temperature A(2)/O process by anaerobic phosphorus release of activated sludge.
    Li J; Jin Y; Guo Y; He J
    Water Sci Technol; 2013; 67(11):2437-43. PubMed ID: 23752374
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nutrient release, recovery and removal from waste sludge of a biological nutrient removal system.
    Wang Y; Zheng SJ; Pei LY; Ke L; Peng DC; Xia SQ
    Environ Technol; 2014; 35(21-24):2734-42. PubMed ID: 25176308
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanical sludge disintegration: providing an alternative carbon source for nutrient removal.
    Kampas P; Parsons SA; Pearce P; Ledoux S; Vale P; Churchley J; Cartmell E
    Environ Technol; 2007 Apr; 28(4):471-7. PubMed ID: 17500322
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Simultaneous nitrogen and phosphorus recovery from sludge-fermentation liquid mixture and application of the fermentation liquid to enhance municipal wastewater biological nutrient removal.
    Zhang C; Chen Y
    Environ Sci Technol; 2009 Aug; 43(16):6164-70. PubMed ID: 19746708
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reduced sludge production in a membrane bioreactor by uncoupling metabolism and its effect on phosphorus accumulation in the biomass.
    Na JH; Nam DH; Ko BG; Lee CY; Kang KH
    Environ Technol; 2017 Dec; 38(23):3007-3015. PubMed ID: 28110608
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Municipal wastewater biological nutrient removal driven by the fermentation liquid of dairy wastewater.
    Liu H; Chen Y; Wu J
    Environ Technol; 2017 Nov; 38(21):2639-2649. PubMed ID: 27966388
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A comparison of BNR activated sludge systems with membrane and settling tank solid-liquid separation.
    Ramphao MC; Wentzel MC; Ekama GA; Alexander WV
    Water Sci Technol; 2006; 53(12):295-303. PubMed ID: 16889266
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optimisation of Noosa BNR plant to improve performance and reduce operating costs.
    Thomas M; Wright P; Blackall L; Urbain V; Keller J
    Water Sci Technol; 2003; 47(12):141-8. PubMed ID: 12926681
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Application and improvement methods of sludge alkaline fermentation liquid as a carbon source for biological nutrient removal: A review.
    Yin Z; Wang J; Wang M; Liu J; Chen Z; Yang B; Zhu L; Yuan R; Zhou B; Chen H
    Sci Total Environ; 2023 May; 873():162341. PubMed ID: 36828064
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Using sludge fermentation liquid to improve wastewater short-cut nitrification-denitrification and denitrifying phosphorus removal via nitrite.
    Ji Z; Chen Y
    Environ Sci Technol; 2010 Dec; 44(23):8957-63. PubMed ID: 21053972
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Impact of membrane solid-liquid separation on design of biological nutrient removal activated sludge systems.
    Ramphao M; Wentzel MC; Merritt R; Ekama GA; Young T; Buckley CA
    Biotechnol Bioeng; 2005 Mar; 89(6):630-46. PubMed ID: 15696540
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modeling the impact of food wastes on wastewater treatment plants.
    Kim M; Nakhla G; Keleman M
    J Environ Manage; 2019 May; 237():344-358. PubMed ID: 30818237
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influence of carbon source on nutrient removal performance and physical-chemical characteristics of aerobic granular sludge.
    Lashkarizadeh M; Yuan Q; Oleszkiewicz JA
    Environ Technol; 2015; 36(17):2161-7. PubMed ID: 25719420
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Relationship between solid retention time and phosphorus removal in anaerobic-intermittent aeration process.
    Lee D; Kim M; Chung J
    J Biosci Bioeng; 2007 Apr; 103(4):338-44. PubMed ID: 17502275
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.