BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

553 related articles for article (PubMed ID: 28712725)

  • 1. Dynamic Organization of Chromatin Domains Revealed by Super-Resolution Live-Cell Imaging.
    Nozaki T; Imai R; Tanbo M; Nagashima R; Tamura S; Tani T; Joti Y; Tomita M; Hibino K; Kanemaki MT; Wendt KS; Okada Y; Nagai T; Maeshima K
    Mol Cell; 2017 Jul; 67(2):282-293.e7. PubMed ID: 28712725
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Organization of fast and slow chromatin revealed by single-nucleosome dynamics.
    Ashwin SS; Nozaki T; Maeshima K; Sasai M
    Proc Natl Acad Sci U S A; 2019 Oct; 116(40):19939-19944. PubMed ID: 31527274
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structure of centromere chromatin: from nucleosome to chromosomal architecture.
    Schalch T; Steiner FA
    Chromosoma; 2017 Aug; 126(4):443-455. PubMed ID: 27858158
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dynamic Nucleosome Movement Provides Structural Information of Topological Chromatin Domains in Living Human Cells.
    Shinkai S; Nozaki T; Maeshima K; Togashi Y
    PLoS Comput Biol; 2016 Oct; 12(10):e1005136. PubMed ID: 27764097
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nucleosome assembly and disassembly activity of GRWD1, a novel Cdt1-binding protein that promotes pre-replication complex formation.
    Aizawa M; Sugimoto N; Watanabe S; Yoshida K; Fujita M
    Biochim Biophys Acta; 2016 Nov; 1863(11):2739-2748. PubMed ID: 27552915
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Super-resolution visualization and modeling of human chromosomal regions reveals cohesin-dependent loop structures.
    Hao X; Parmar JJ; Lelandais B; Aristov A; Ouyang W; Weber C; Zimmer C
    Genome Biol; 2021 May; 22(1):150. PubMed ID: 33975635
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dynamic chromatin organization in the cell.
    Prieto EI; Maeshima K
    Essays Biochem; 2019 Apr; 63(1):133-145. PubMed ID: 30967477
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Distinct functions of condensin I and II in mitotic chromosome assembly.
    Hirota T; Gerlich D; Koch B; Ellenberg J; Peters JM
    J Cell Sci; 2004 Dec; 117(Pt 26):6435-45. PubMed ID: 15572404
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Local nucleosome dynamics facilitate chromatin accessibility in living mammalian cells.
    Hihara S; Pack CG; Kaizu K; Tani T; Hanafusa T; Nozaki T; Takemoto S; Yoshimi T; Yokota H; Imamoto N; Sako Y; Kinjo M; Takahashi K; Nagai T; Maeshima K
    Cell Rep; 2012 Dec; 2(6):1645-56. PubMed ID: 23246002
    [TBL] [Abstract][Full Text] [Related]  

  • 10. New insight into the mitotic chromosome structure: irregular folding of nucleosome fibers without 30-nm chromatin structure.
    Maeshima K; Hihara S; Takata H
    Cold Spring Harb Symp Quant Biol; 2010; 75():439-44. PubMed ID: 21447821
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Human centromeric chromatin is a dynamic chromosomal domain that can spread over noncentromeric DNA.
    Lam AL; Boivin CD; Bonney CF; Rudd MK; Sullivan BA
    Proc Natl Acad Sci U S A; 2006 Mar; 103(11):4186-91. PubMed ID: 16537506
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bridging the dynamics and organization of chromatin domains by mathematical modeling.
    Shinkai S; Nozaki T; Maeshima K; Togashi Y
    Nucleus; 2017 Jul; 8(4):353-359. PubMed ID: 28406741
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mitotic chromosome assembly despite nucleosome depletion in
    Shintomi K; Inoue F; Watanabe H; Ohsumi K; Ohsugi M; Hirano T
    Science; 2017 Jun; 356(6344):1284-1287. PubMed ID: 28522692
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Higher-order folding of heterochromatin: protein bridges span the nucleosome arrays.
    Grigoryev SA
    Biochem Cell Biol; 2001; 79(3):227-41. PubMed ID: 11467737
    [TBL] [Abstract][Full Text] [Related]  

  • 15. From nucleosome to chromosome: a dynamic organization of genetic information.
    Fransz P; de Jong H
    Plant J; 2011 Apr; 66(1):4-17. PubMed ID: 21443619
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Heterochromatin protein 2 interacts with Nap-1 and NURF: a link between heterochromatin-induced gene silencing and the chromatin remodeling machinery in Drosophila.
    Stephens GE; Xiao H; Lankenau DH; Wu C; Elgin SC
    Biochemistry; 2006 Dec; 45(50):14990-9. PubMed ID: 17154536
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Centromere dynamics.
    Bloom K
    Curr Opin Genet Dev; 2007 Apr; 17(2):151-6. PubMed ID: 17320374
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The end adjusts the means: heterochromatin remodelling during terminal cell differentiation.
    Grigoryev SA; Bulynko YA; Popova EY
    Chromosome Res; 2006; 14(1):53-69. PubMed ID: 16506096
    [TBL] [Abstract][Full Text] [Related]  

  • 19. 3D structures of individual mammalian genomes studied by single-cell Hi-C.
    Stevens TJ; Lando D; Basu S; Atkinson LP; Cao Y; Lee SF; Leeb M; Wohlfahrt KJ; Boucher W; O'Shaughnessy-Kirwan A; Cramard J; Faure AJ; Ralser M; Blanco E; Morey L; Sansó M; Palayret MGS; Lehner B; Di Croce L; Wutz A; Hendrich B; Klenerman D; Laue ED
    Nature; 2017 Apr; 544(7648):59-64. PubMed ID: 28289288
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Flexible Ends of CENP-A Nucleosome Are Required for Mitotic Fidelity.
    Roulland Y; Ouararhni K; Naidenov M; Ramos L; Shuaib M; Syed SH; Lone IN; Boopathi R; Fontaine E; Papai G; Tachiwana H; Gautier T; Skoufias D; Padmanabhan K; Bednar J; Kurumizaka H; Schultz P; Angelov D; Hamiche A; Dimitrov S
    Mol Cell; 2016 Aug; 63(4):674-685. PubMed ID: 27499292
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 28.