These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

248 related articles for article (PubMed ID: 28712779)

  • 1. Fabrication of engineered biochar from paper mill sludge and its application into removal of arsenic and cadmium in acidic water.
    Yoon K; Cho DW; Tsang DCW; Bolan N; Rinklebe J; Song H
    Bioresour Technol; 2017 Dec; 246():69-75. PubMed ID: 28712779
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Adsorptive behaviour of palm oil mill sludge biochar pyrolyzed at low temperature for copper and cadmium removal.
    Goh CL; Sethupathi S; Bashir MJ; Ahmed W
    J Environ Manage; 2019 May; 237():281-288. PubMed ID: 30802752
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synthesis of green marine algal-based biochar for remediation of arsenic(V) from contaminated waters in batch and column mode of operation.
    Senthilkumar R; Reddy Prasad DM; Govindarajan L; Saravanakumar K; Naveen Prasad BS
    Int J Phytoremediation; 2020; 22(3):279-286. PubMed ID: 31475570
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Adsorption of Cd(II) from aqueous solutions by rape straw biochar derived from different modification processes.
    Li B; Yang L; Wang CQ; Zhang QP; Liu QC; Li YD; Xiao R
    Chemosphere; 2017 May; 175():332-340. PubMed ID: 28235742
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biochar produced from the co-pyrolysis of sewage sludge and waste tires for cadmium and tetracycline adsorption from water.
    Fan X; Zhang J; Xie Y; Xu D; Liu Y; Liu J; Hou J
    Water Sci Technol; 2021 Mar; 83(6):1429-1445. PubMed ID: 33767048
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Preparation of rice straw-derived biochar for efficient cadmium removal by modification of oxygen-containing functional groups.
    Zhang H; Yue X; Li F; Xiao R; Zhang Y; Gu D
    Sci Total Environ; 2018 Aug; 631-632():795-802. PubMed ID: 29727989
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Efficient absorptive removal of Cd(Ⅱ) in aqueous solution by biochar derived from sewage sludge and calcium sulfate.
    Liu L; Yue T; Liu R; Lin H; Wang D; Li B
    Bioresour Technol; 2021 Sep; 336():125333. PubMed ID: 34082334
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Remediation of As(III) and Cd(II) co-contamination and its mechanism in aqueous systems by a novel calcium-based magnetic biochar.
    Wu J; Huang D; Liu X; Meng J; Tang C; Xu J
    J Hazard Mater; 2018 Apr; 348():10-19. PubMed ID: 29367128
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pyrolysis of sewage sludge by electromagnetic induction: Biochar properties and application in adsorption removal of Pb(II), Cd(II) from aqueous solution.
    Xue Y; Wang C; Hu Z; Zhou Y; Xiao Y; Wang T
    Waste Manag; 2019 Apr; 89():48-56. PubMed ID: 31079758
    [TBL] [Abstract][Full Text] [Related]  

  • 10. KOH-activated high surface area Douglas Fir biochar for adsorbing aqueous Cr(VI), Pb(II) and Cd(II).
    Herath A; Layne CA; Perez F; Hassan EB; Pittman CU; Mlsna TE
    Chemosphere; 2021 Apr; 269():128409. PubMed ID: 33069440
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Self-engineered iron oxide nanoparticle incorporated on mesoporous biochar derived from textile mill sludge for the removal of an emerging pharmaceutical pollutant.
    Singh V; Srivastava VC
    Environ Pollut; 2020 Apr; 259():113822. PubMed ID: 31887588
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Efficient removal of priority, hazardous priority and emerging pollutants with Prunus armeniaca functionalized biochar from aqueous wastes: Experimental optimization and modeling.
    Turk Sekulić M; Pap S; Stojanović Z; Bošković N; Radonić J; Šolević Knudsen T
    Sci Total Environ; 2018 Feb; 613-614():736-750. PubMed ID: 28938216
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Adsorption of cadmium (II) ions from aqueous solution by a new low-cost adsorbent--bamboo charcoal.
    Wang FY; Wang H; Ma JW
    J Hazard Mater; 2010 May; 177(1-3):300-6. PubMed ID: 20036463
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Exploration on the role of different iron species in the remediation of As and Cd co-contamination by sewage sludge biochar.
    Wang Q; Wen J; Yang L; Cui H; Zeng T; Huang J
    Environ Sci Pollut Res Int; 2023 Mar; 30(13):39154-39168. PubMed ID: 36595173
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Adsorptive removal of chlorophenols from aqueous solution by low cost adsorbent--Kinetics and isotherm analysis.
    Radhika M; Palanivelu K
    J Hazard Mater; 2006 Nov; 138(1):116-24. PubMed ID: 16806675
    [TBL] [Abstract][Full Text] [Related]  

  • 16. From wastes to functions: A paper mill sludge-based calcium-containing porous biochar adsorbent for phosphorus removal.
    Wang Z; Miao R; Ning P; He L; Guan Q
    J Colloid Interface Sci; 2021 Jul; 593():434-446. PubMed ID: 33765625
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Adsorption of cadmium by biochar produced from pyrolysis of corn stalk in aqueous solution.
    Ma F; Zhao B; Diao J
    Water Sci Technol; 2016 Sep; 74(6):1335-1345. PubMed ID: 27685963
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of sludge thermal-alkaline pretreatment on cationic red X-GRL adsorption onto pyrolysis biochar of sewage sludge.
    Xiao B; Dai Q; Yu X; Yu P; Zhai S; Liu R; Guo X; Liu J; Chen H
    J Hazard Mater; 2018 Feb; 343():347-355. PubMed ID: 29017118
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Removal of methylene blue dye using rice husk, cow dung and sludge biochar: Characterization, application, and kinetic studies.
    Ahmad A; Khan N; Giri BS; Chowdhary P; Chaturvedi P
    Bioresour Technol; 2020 Jun; 306():123202. PubMed ID: 32222427
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of pyrolysis temperatures and times on the adsorption of cadmium onto orange peel derived biochar.
    Tran HN; You SJ; Chao HP
    Waste Manag Res; 2016 Feb; 34(2):129-38. PubMed ID: 26608900
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.