These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
243 related articles for article (PubMed ID: 28712779)
41. Synergistic removal performance and mechanism of Cd(II) and As(III) from irrigation water by iron sulfide-based porous biochar. Lu Y; Zeng H; Lin H; Liang Y; Feng M; Zhou Z; Liang Z; Li H; Chen G Environ Sci Pollut Res Int; 2024 Feb; 31(8):11591-11604. PubMed ID: 38221557 [TBL] [Abstract][Full Text] [Related]
42. Performance of CO Cha JS; Jang SH; Lam SS; Kim H; Kim YM; Jeon BH; Park YK Chemosphere; 2021 Sep; 279():130521. PubMed ID: 33866093 [TBL] [Abstract][Full Text] [Related]
43. Efficacy of agricultural waste derived biochar for arsenic removal: Tackling water quality in the Indo-Gangetic plain. Mukherjee S; Thakur AK; Goswami R; Mazumder P; Taki K; Vithanage M; Kumar M J Environ Manage; 2021 Mar; 281():111814. PubMed ID: 33401117 [TBL] [Abstract][Full Text] [Related]
44. Highly efficient nickel (II) removal by sewage sludge biochar supported α-Fe2O3 and α-FeOOH: Sorption characteristics and mechanisms. Yang L; He L; Xue J; Wu L; Ma Y; Li H; Peng P; Li M; Zhang Z PLoS One; 2019; 14(6):e0218114. PubMed ID: 31188870 [TBL] [Abstract][Full Text] [Related]
45. Arsenic and chromium removal from water using biochars derived from rice husk, organic solid wastes and sewage sludge. Agrafioti E; Kalderis D; Diamadopoulos E J Environ Manage; 2014 Jan; 133():309-14. PubMed ID: 24412594 [TBL] [Abstract][Full Text] [Related]
46. Enhanced adsorption of Cd(II) from aqueous solution by a magnesium oxide-rice husk biochar composite. Xiang J; Lin Q; Cheng S; Guo J; Yao X; Liu Q; Yin G; Liu D Environ Sci Pollut Res Int; 2018 May; 25(14):14032-14042. PubMed ID: 29520542 [TBL] [Abstract][Full Text] [Related]
47. Mitigation of Cd(II) contamination in aqueous solution and soil by multifunctional hydroxyapatite/sludge biochar composite. Mo G; Gao X Environ Sci Pollut Res Int; 2023 Aug; 30(37):87743-87756. PubMed ID: 37430084 [TBL] [Abstract][Full Text] [Related]
48. A novel modification of lignin on corncob-based biochar to enhance removal of cadmium from water. Luo M; Lin H; Li B; Dong Y; He Y; Wang L Bioresour Technol; 2018 Jul; 259():312-318. PubMed ID: 29573610 [TBL] [Abstract][Full Text] [Related]
49. [Cadmium adsorption by biochar prepared from pyrolysis of silk waste at different temperatures]. Ji HY; Wang YY; Lyu HH; Liu YX; Yang RQ; Yang SM Ying Yong Sheng Tai Xue Bao; 2018 Apr; 29(4):1328-1338. PubMed ID: 29726244 [TBL] [Abstract][Full Text] [Related]
50. Comparing the adsorption mechanism of Cd by rice straw pristine and KOH-modified biochar. Bashir S; Zhu J; Fu Q; Hu H Environ Sci Pollut Res Int; 2018 Apr; 25(12):11875-11883. PubMed ID: 29446023 [TBL] [Abstract][Full Text] [Related]
51. Sustainable removal of pernicious arsenic and cadmium by a novel composite of MnO Shim J; Kumar M; Mukherjee S; Goswami R J Environ Manage; 2019 Mar; 234():8-20. PubMed ID: 30599330 [TBL] [Abstract][Full Text] [Related]
52. Hydroxyapatite modified sludge-based biochar for the adsorption of Cu Chen Y; Li M; Li Y; Liu Y; Chen Y; Li H; Li L; Xu F; Jiang H; Chen L Bioresour Technol; 2021 Feb; 321():124413. PubMed ID: 33285503 [TBL] [Abstract][Full Text] [Related]
53. Synthesis of a novel ternary HA/Fe-Mn oxides-loaded biochar composite and its application in cadmium(II) and arsenic(V) adsorption. Guo J; Yan C; Luo Z; Fang H; Hu S; Cao Y J Environ Sci (China); 2019 Nov; 85():168-176. PubMed ID: 31471023 [TBL] [Abstract][Full Text] [Related]
54. Cadmium ion removal from aqueous media using banana peel biochar/Fe Foroutan R; Peighambardoust SJ; Mohammadi R; Peighambardoust SH; Ramavandi B Environ Res; 2022 Aug; 211():113020. PubMed ID: 35248568 [TBL] [Abstract][Full Text] [Related]
55. Removal of phosphate from water by paper mill sludge biochar. Zhang M; Lin K; Li X; Wu L; Yu J; Cao S; Zhang D; Xu L; Parikh SJ; Ok YS Environ Pollut; 2022 Jan; 293():118521. PubMed ID: 34793910 [TBL] [Abstract][Full Text] [Related]
56. Desorption of cadmium from goethite: effects of pH, temperature and aging. Mustafa G; Kookana RS; Singh B Chemosphere; 2006 Jul; 64(5):856-65. PubMed ID: 16330070 [TBL] [Abstract][Full Text] [Related]
57. Recovery of phosphate from aqueous solution by dewatered dry sludge biochar and its feasibility in fertilizer use. Liu M; Li R; Wang J; Liu X; Li S; Shen W Sci Total Environ; 2022 Mar; 814():152752. PubMed ID: 34979229 [TBL] [Abstract][Full Text] [Related]
58. Efficiency and mechanisms of Cd removal from aqueous solution by biochar derived from water hyacinth (Eichornia crassipes). Zhang F; Wang X; Yin D; Peng B; Tan C; Liu Y; Tan X; Wu S J Environ Manage; 2015 Apr; 153():68-73. PubMed ID: 25660498 [TBL] [Abstract][Full Text] [Related]
59. Adsorption characteristics and the removal mechanism of two novel Fe-Zn composite modified biochar for Cd(II) in water. Yang T; Xu Y; Huang Q; Sun Y; Liang X; Wang L; Qin X; Zhao L Bioresour Technol; 2021 Aug; 333():125078. PubMed ID: 33887624 [TBL] [Abstract][Full Text] [Related]
60. High adsorption performance for As(III) and As(V) onto novel aluminum-enriched biochar derived from abandoned Tetra Paks. Ding Z; Xu X; Phan T; Hu X; Nie G Chemosphere; 2018 Oct; 208():800-807. PubMed ID: 29906754 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]