These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

342 related articles for article (PubMed ID: 28712849)

  • 1. Structure, function, and mechanism of proline utilization A (PutA).
    Liu LK; Becker DF; Tanner JJ
    Arch Biochem Biophys; 2017 Oct; 632():142-157. PubMed ID: 28712849
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evidence for hysteretic substrate channeling in the proline dehydrogenase and Δ1-pyrroline-5-carboxylate dehydrogenase coupled reaction of proline utilization A (PutA).
    Moxley MA; Sanyal N; Krishnan N; Tanner JJ; Becker DF
    J Biol Chem; 2014 Feb; 289(6):3639-51. PubMed ID: 24352662
    [TBL] [Abstract][Full Text] [Related]  

  • 3. First evidence for substrate channeling between proline catabolic enzymes: a validation of domain fusion analysis for predicting protein-protein interactions.
    Sanyal N; Arentson BW; Luo M; Tanner JJ; Becker DF
    J Biol Chem; 2015 Jan; 290(4):2225-34. PubMed ID: 25492892
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization of a bifunctional PutA homologue from Bradyrhizobium japonicum and identification of an active site residue that modulates proline reduction of the flavin adenine dinucleotide cofactor.
    Krishnan N; Becker DF
    Biochemistry; 2005 Jun; 44(25):9130-9. PubMed ID: 15966737
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structures of the Escherichia coli PutA proline dehydrogenase domain in complex with competitive inhibitors.
    Zhang M; White TA; Schuermann JP; Baban BA; Becker DF; Tanner JJ
    Biochemistry; 2004 Oct; 43(39):12539-48. PubMed ID: 15449943
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Substrate channeling in proline metabolism.
    Arentson BW; Sanyal N; Becker DF
    Front Biosci (Landmark Ed); 2012 Jan; 17(1):375-88. PubMed ID: 22201749
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structural Biology of Proline Catabolic Enzymes.
    Tanner JJ
    Antioxid Redox Signal; 2019 Feb; 30(4):650-673. PubMed ID: 28990412
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Probing the function of a ligand-modulated dynamic tunnel in bifunctional proline utilization A (PutA).
    Korasick DA; Christgen SL; Qureshi IA; Becker DF; Tanner JJ
    Arch Biochem Biophys; 2021 Nov; 712():109025. PubMed ID: 34506758
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Unique structural features and sequence motifs of proline utilization A (PutA).
    Singh RK; Tanner JJ
    Front Biosci (Landmark Ed); 2012 Jan; 17(2):556-68. PubMed ID: 22201760
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rapid reaction kinetics of proline dehydrogenase in the multifunctional proline utilization A protein.
    Moxley MA; Becker DF
    Biochemistry; 2012 Jan; 51(1):511-20. PubMed ID: 22148640
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electrochemical and functional characterization of the proline dehydrogenase domain of the PutA flavoprotein from Escherichia coli.
    Vinod MP; Bellur P; Becker DF
    Biochemistry; 2002 May; 41(20):6525-32. PubMed ID: 12009917
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structure and characterization of a class 3B proline utilization A: Ligand-induced dimerization and importance of the C-terminal domain for catalysis.
    Korasick DA; Gamage TT; Christgen S; Stiers KM; Beamer LJ; Henzl MT; Becker DF; Tanner JJ
    J Biol Chem; 2017 Jun; 292(23):9652-9665. PubMed ID: 28420730
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Engineering a trifunctional proline utilization A chimaera by fusing a DNA-binding domain to a bifunctional PutA.
    Arentson BW; Hayes EL; Zhu W; Singh H; Tanner JJ; Becker DF
    Biosci Rep; 2016 Dec; 36(6):. PubMed ID: 27742866
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification of a Conserved Histidine As Being Critical for the Catalytic Mechanism and Functional Switching of the Multifunctional Proline Utilization A Protein.
    Moxley MA; Zhang L; Christgen S; Tanner JJ; Becker DF
    Biochemistry; 2017 Jun; 56(24):3078-3088. PubMed ID: 28558236
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Regulation of PutA-membrane associations by flavin adenine dinucleotide reduction.
    Zhang W; Zhou Y; Becker DF
    Biochemistry; 2004 Oct; 43(41):13165-74. PubMed ID: 15476410
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structural Basis for the Substrate Inhibition of Proline Utilization A by Proline.
    Korasick DA; Pemberton TA; Arentson BW; Becker DF; Tanner JJ
    Molecules; 2017 Dec; 23(1):. PubMed ID: 29295473
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Exploring the proline-dependent conformational change in the multifunctional PutA flavoprotein by tryptophan fluorescence spectroscopy.
    Zhu W; Becker DF
    Biochemistry; 2005 Sep; 44(37):12297-306. PubMed ID: 16156643
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Flavin redox state triggers conformational changes in the PutA protein from Escherichia coli.
    Zhu W; Becker DF
    Biochemistry; 2003 May; 42(18):5469-77. PubMed ID: 12731889
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structure of the proline dehydrogenase domain of the multifunctional PutA flavoprotein.
    Lee YH; Nadaraia S; Gu D; Becker DF; Tanner JJ
    Nat Struct Biol; 2003 Feb; 10(2):109-14. PubMed ID: 12514740
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Redox properties of the PutA protein from Escherichia coli and the influence of the flavin redox state on PutA-DNA interactions.
    Becker DF; Thomas EA
    Biochemistry; 2001 Apr; 40(15):4714-21. PubMed ID: 11294639
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.