These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 28713233)

  • 1. The Role of the Interplay between Stimulus Type and Timing in Explaining BCI-Illiteracy for Visual P300-Based Brain-Computer Interfaces.
    Carabalona R
    Front Neurosci; 2017; 11():363. PubMed ID: 28713233
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Light on! Real world evaluation of a P300-based brain-computer interface (BCI) for environment control in a smart home.
    Carabalona R; Grossi F; Tessadri A; Castiglioni P; Caracciolo A; de Munari I
    Ergonomics; 2012; 55(5):552-63. PubMed ID: 22455346
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Advances in P300 brain-computer interface spellers: toward paradigm design and performance evaluation.
    Pan J; Chen X; Ban N; He J; Chen J; Huang H
    Front Hum Neurosci; 2022; 16():1077717. PubMed ID: 36618996
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Non-invasive EEG-based BCI spellers from the beginning to today: a mini-review.
    Maslova O; Komarova Y; Shusharina N; Kolsanov A; Zakharov A; Garina E; Pyatin V
    Front Hum Neurosci; 2023; 17():1216648. PubMed ID: 37680264
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Brain-Computer Interface Spellers: A Review.
    Rezeika A; Benda M; Stawicki P; Gembler F; Saboor A; Volosyak I
    Brain Sci; 2018 Mar; 8(4):. PubMed ID: 29601538
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Brain-Computer Interface Speller Based on Steady-State Visual Evoked Potential: A Review Focusing on the Stimulus Paradigm and Performance.
    Li M; He D; Li C; Qi S
    Brain Sci; 2021 Apr; 11(4):. PubMed ID: 33916189
    [TBL] [Abstract][Full Text] [Related]  

  • 7. P300-Based Brain-Computer Interface Speller Performance Estimation with Classifier-Based Latency Estimation.
    Khan NN; Sweet T; Harvey CA; Warschausky S; Huggins JE; Thompson DE
    J Vis Exp; 2023 Sep; (199):. PubMed ID: 37747230
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Concentration on performance with P300-based BCI systems: a matter of interface features.
    da Silva-Sauer L; Valero-Aguayo L; de la Torre-Luque A; Ron-Angevin R; Varona-Moya S
    Appl Ergon; 2016 Jan; 52():325-32. PubMed ID: 26360225
    [TBL] [Abstract][Full Text] [Related]  

  • 9. How many people are able to control a P300-based brain-computer interface (BCI)?
    Guger C; Daban S; Sellers E; Holzner C; Krausz G; Carabalona R; Gramatica F; Edlinger G
    Neurosci Lett; 2009 Oct; 462(1):94-8. PubMed ID: 19545601
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A comparison study of two P300 speller paradigms for brain-computer interface.
    Pan J; Li Y; Gu Z; Yu Z
    Cogn Neurodyn; 2013 Dec; 7(6):523-9. PubMed ID: 24427224
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Critiquing the Concept of BCI Illiteracy.
    Thompson MC
    Sci Eng Ethics; 2019 Aug; 25(4):1217-1233. PubMed ID: 30117107
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Eliciting dual-frequency SSVEP using a hybrid SSVEP-P300 BCI.
    Chang MH; Lee JS; Heo J; Park KS
    J Neurosci Methods; 2016 Jan; 258():104-13. PubMed ID: 26561770
    [TBL] [Abstract][Full Text] [Related]  

  • 13. UMA-BCI Speller: An easily configurable P300 speller tool for end users.
    Velasco-Álvarez F; Sancha-Ros S; García-Garaluz E; Fernández-Rodríguez Á; Medina-Juliá MT; Ron-Angevin R
    Comput Methods Programs Biomed; 2019 Apr; 172():127-138. PubMed ID: 30902124
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A visual parallel-BCI speller based on the time-frequency coding strategy.
    Xu M; Chen L; Zhang L; Qi H; Ma L; Tang J; Wan B; Ming D
    J Neural Eng; 2014 Apr; 11(2):026014. PubMed ID: 24608672
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The cost of space independence in P300-BCI spellers.
    Chennu S; Alsufyani A; Filetti M; Owen AM; Bowman H
    J Neuroeng Rehabil; 2013 Jul; 10():82. PubMed ID: 23895406
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Analyzing and computing humans by means of the brain using Brain-Computer Interfaces - understanding the user - previous evidence, self-relevance and the user's self-concept as potential superordinate human factors of relevance.
    Herbert C
    Front Hum Neurosci; 2023; 17():1286895. PubMed ID: 38435127
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Exploration of User's Mental State Changes during Performing Brain-Computer Interface.
    Ko LW; Chikara RK; Lee YC; Lin WC
    Sensors (Basel); 2020 Jun; 20(11):. PubMed ID: 32503162
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Doubling the Speed of N200 Speller via Dual-Directional Motion Encoding.
    Liu D; Liu C; Chen J; Zhang D; Hong B
    IEEE Trans Biomed Eng; 2021 Jan; 68(1):204-213. PubMed ID: 32746042
    [TBL] [Abstract][Full Text] [Related]  

  • 19. P300-Based Brain-Computer Interface Speller: Usability Evaluation of Three Speller Sizes by Severely Motor-Disabled Patients.
    Medina-Juliá MT; Fernández-Rodríguez Á; Velasco-Álvarez F; Ron-Angevin R
    Front Hum Neurosci; 2020; 14():583358. PubMed ID: 33192417
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tiny noise, big mistakes: adversarial perturbations induce errors in brain-computer interface spellers.
    Zhang X; Wu D; Ding L; Luo H; Lin CT; Jung TP; Chavarriaga R
    Natl Sci Rev; 2021 Apr; 8(4):nwaa233. PubMed ID: 34691612
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.