BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 28713478)

  • 1. An integrated microfluidic system for the isolation and detection of ovarian circulating tumor cells using cell selection and enrichment methods.
    Tsai SC; Hung LY; Lee GB
    Biomicrofluidics; 2017 May; 11(3):034122. PubMed ID: 28713478
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Recent advances in isolation and detection of circulating tumor cells with a microfluidic system].
    Cao R; Zhang M; Yu H; Qin J
    Se Pu; 2022 Mar; 40(3):213-223. PubMed ID: 35243831
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multivalent DNA nanospheres for enhanced capture of cancer cells in microfluidic devices.
    Sheng W; Chen T; Tan W; Fan ZH
    ACS Nano; 2013 Aug; 7(8):7067-76. PubMed ID: 23837646
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Two-stage microfluidic chip for selective isolation of circulating tumor cells (CTCs).
    Hyun KA; Lee TY; Lee SH; Jung HI
    Biosens Bioelectron; 2015 May; 67():86-92. PubMed ID: 25060749
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hybrid Microfluidic Device for High Throughput Isolation of Cells Using Aptamer Functionalized Diatom Frustules.
    Mohammadi R; Asghari M; Colombo M; Vaezi Z; Richards DA; Stavrakis S; Naderi-Manesh H; DeMello A
    Chimia (Aarau); 2022 Aug; 76(7-8):661-668. PubMed ID: 38071633
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Accurate Isolation of Circulating Tumor Cells via a Heterovalent DNA Framework Recognition Element-Functionalized Microfluidic Chip.
    Liu Y; Lin Z; Zheng Z; Zhang Y; Shui L
    ACS Sens; 2022 Feb; 7(2):666-673. PubMed ID: 35113538
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Continuous enrichment of circulating tumor cells using a microfluidic lateral flow filtration chip.
    Lee SW; Hyun KA; Kim SI; Kang JY; Jung HI
    J Chromatogr A; 2015 Jan; 1377():100-5. PubMed ID: 25542705
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An automated microfluidic system for selection of aptamer probes against ovarian cancer tissues.
    Liu WT; Lee WB; Tsai YC; Chuang YJ; Hsu KF; Lee GB
    Biomicrofluidics; 2019 Jan; 13(1):014114. PubMed ID: 30867884
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A PLGA nanofiber microfluidic device for highly efficient isolation and release of different phenotypic circulating tumor cells based on dual aptamers.
    Wu Z; Pan Y; Wang Z; Ding P; Gao T; Li Q; Hu M; Zhu W; Pei R
    J Mater Chem B; 2021 Mar; 9(9):2212-2220. PubMed ID: 33616137
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An integrated on-chip platform for negative enrichment of tumour cells.
    Bhuvanendran Nair Gourikutty S; Chang CP; Poenar DP
    J Chromatogr B Analyt Technol Biomed Life Sci; 2016 Aug; 1028():153-164. PubMed ID: 27344255
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An integrated enrichment system to facilitate isolation and molecular characterization of single cancer cells from whole blood.
    Yu L; Sa S; Wang L; Dulmage K; Bhagwat N; Yee SS; Sen M; Pletcher CH; Moore JS; Saksena S; Dixon EP; Carpenter EL
    Cytometry A; 2018 Dec; 93(12):1226-1233. PubMed ID: 30549400
    [TBL] [Abstract][Full Text] [Related]  

  • 12. MagPure chip: an immunomagnetic-based microfluidic device for high purification of circulating tumor cells from liquid biopsies.
    Descamps L; Garcia J; Barthelemy D; Laurenceau E; Payen L; Le Roy D; Deman AL
    Lab Chip; 2022 Oct; 22(21):4151-4166. PubMed ID: 36148526
    [TBL] [Abstract][Full Text] [Related]  

  • 13. All-in-one centrifugal microfluidic device for size-selective circulating tumor cell isolation with high purity.
    Lee A; Park J; Lim M; Sunkara V; Kim SY; Kim GH; Kim MH; Cho YK
    Anal Chem; 2014 Nov; 86(22):11349-56. PubMed ID: 25317565
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High-Throughput Isolation of Circulating Tumor Cells Using Cascaded Inertial Focusing Microfluidic Channel.
    Abdulla A; Liu W; Gholamipour-Shirazi A; Sun J; Ding X
    Anal Chem; 2018 Apr; 90(7):4397-4405. PubMed ID: 29537252
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An on-chip Cell-SELEX process for automatic selection of high-affinity aptamers specific to different histologically classified ovarian cancer cells.
    Hung LY; Wang CH; Hsu KF; Chou CY; Lee GB
    Lab Chip; 2014 Oct; 14(20):4017-28. PubMed ID: 25144781
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Antibody-engineered red blood cell interface for high-performance capture and release of circulating tumor cells.
    Shen H; Su R; Peng J; Zhu L; Deng K; Niu Q; Song Y; Yang L; Wu L; Zhu Z; Yang C
    Bioact Mater; 2022 May; 11():32-40. PubMed ID: 34938910
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Advances in isolation and enrichment of circulating tumor cells in microfluidic chips].
    Du J; Liu X; Xu X
    Se Pu; 2014 Jan; 32(1):7-12. PubMed ID: 24783862
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hybrid double-spiral microfluidic chip for RBC-lysis-free enrichment of rare cells from whole blood.
    Shirai K; Guan G; Meihui T; Xiaoling P; Oka Y; Takahashi Y; Bhagat AAS; Yanagida M; Iwanaga S; Matsubara N; Mukohara T; Yoshida T
    Lab Chip; 2022 Nov; 22(22):4418-4429. PubMed ID: 36305222
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Microfluidic Chip for Efficient Circulating Tumor Cells Enrichment, Screening, and Single-Cell RNA Sequencing.
    Shi F; Jia F; Wei Z; Ma Y; Fang Z; Zhang W; Hu Z
    Proteomics; 2021 Feb; 21(3-4):e2000060. PubMed ID: 33219587
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Isolation of DNA aptamers targeting N-cadherin and high-efficiency capture of circulating tumor cells by using dual aptamers.
    Gao T; Ding P; Li W; Wang Z; Lin Q; Pei R
    Nanoscale; 2020 Nov; 12(44):22574-22585. PubMed ID: 33174555
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.