These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

208 related articles for article (PubMed ID: 28713810)

  • 1. A Biomechanical Comparison of Proportional Electromyography Control to Biological Torque Control Using a Powered Hip Exoskeleton.
    Young AJ; Gannon H; Ferris DP
    Front Bioeng Biotechnol; 2017; 5():37. PubMed ID: 28713810
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Learning to walk with an adaptive gain proportional myoelectric controller for a robotic ankle exoskeleton.
    Koller JR; Jacobs DA; Ferris DP; Remy CD
    J Neuroeng Rehabil; 2015 Nov; 12():97. PubMed ID: 26536868
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanics and energetics of post-stroke walking aided by a powered ankle exoskeleton with speed-adaptive myoelectric control.
    McCain EM; Dick TJM; Giest TN; Nuckols RW; Lewek MD; Saul KR; Sawicki GS
    J Neuroeng Rehabil; 2019 May; 16(1):57. PubMed ID: 31092269
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biomechanics and energetics of walking in powered ankle exoskeletons using myoelectric control versus mechanically intrinsic control.
    Koller JR; Remy CD; Ferris DP
    J Neuroeng Rehabil; 2018 May; 15(1):42. PubMed ID: 29801451
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Neuromechanics and Energetics of Walking With an Ankle Exoskeleton Using Neuromuscular-Model Based Control: A Parameter Study.
    Shafer BA; Philius SA; Nuckols RW; McCall J; Young AJ; Sawicki GS
    Front Bioeng Biotechnol; 2021; 9():615358. PubMed ID: 33954159
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Gastrocnemius Myoelectric Control of a Robotic Hip Exoskeleton Can Reduce the User's Lower-Limb Muscle Activities at Push Off.
    Grazi L; Crea S; Parri A; Molino Lova R; Micera S; Vitiello N
    Front Neurosci; 2018; 12():71. PubMed ID: 29491830
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Short-term locomotor adaptation to a robotic ankle exoskeleton does not alter soleus Hoffmann reflex amplitude.
    Kao PC; Lewis CL; Ferris DP
    J Neuroeng Rehabil; 2010 Jul; 7():33. PubMed ID: 20659331
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biomechanical Comparison of Assistance Strategies Using a Bilateral Robotic Knee Exoskeleton.
    Lee D; McLain B; Kang I; Young A
    IEEE Trans Biomed Eng; 2021 Sep; 68(9):2870-2879. PubMed ID: 34033531
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evaluation of controllers for augmentative hip exoskeletons and their effects on metabolic cost of walking: explicit versus implicit synchronization.
    Manzoori AR; Malatesta D; Primavesi J; Ijspeert A; Bouri M
    Front Bioeng Biotechnol; 2024; 12():1324587. PubMed ID: 38532879
    [No Abstract]   [Full Text] [Related]  

  • 10. Influence of Power Delivery Timing on the Energetics and Biomechanics of Humans Wearing a Hip Exoskeleton.
    Young AJ; Foss J; Gannon H; Ferris DP
    Front Bioeng Biotechnol; 2017; 5():4. PubMed ID: 28337434
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optimized hip-knee-ankle exoskeleton assistance at a range of walking speeds.
    Bryan GM; Franks PW; Song S; Voloshina AS; Reyes R; O'Donovan MP; Gregorczyk KN; Collins SH
    J Neuroeng Rehabil; 2021 Oct; 18(1):152. PubMed ID: 34663372
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Gastrocnemius myoelectric control of a robotic hip exoskeleton.
    Grazi L; Crea S; Parri A; Yan T; Cortese M; Giovacchini F; Cempini M; Pasquini G; Micera S; Vitiello N
    Annu Int Conf IEEE Eng Med Biol Soc; 2015; 2015():3881-4. PubMed ID: 26737141
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biomechanical walking mechanisms underlying the metabolic reduction caused by an autonomous exoskeleton.
    Mooney LM; Herr HM
    J Neuroeng Rehabil; 2016 Jan; 13():4. PubMed ID: 26817449
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Motor modules during adaptation to walking in a powered ankle exoskeleton.
    Jacobs DA; Koller JR; Steele KM; Ferris DP
    J Neuroeng Rehabil; 2018 Jan; 15(1):2. PubMed ID: 29298705
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Preliminary Validation of Proportional Myoelectric Control of A Commercially Available Robotic Ankle Exoskeleton.
    Hybart RL; Ferris DP
    IEEE Int Conf Rehabil Robot; 2022 Jul; 2022():1-5. PubMed ID: 36176129
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Metabolic cost of walking with electromechanical ankle exoskeletons under proportional myoelectric control on a treadmill and outdoors.
    Hybart R; Villancio-Wolter KS; Ferris DP
    PeerJ; 2023; 11():e15775. PubMed ID: 37525661
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanics and energetics of level walking with powered ankle exoskeletons.
    Sawicki GS; Ferris DP
    J Exp Biol; 2008 May; 211(Pt 9):1402-13. PubMed ID: 18424674
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Neuromechanical Adaptation to Walking With Electromechanical Ankle Exoskeletons Under Proportional Myoelectric Control.
    Hybart RL; Ferris DP
    IEEE Open J Eng Med Biol; 2023; 4():119-128. PubMed ID: 38274783
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A pneumatically powered knee-ankle-foot orthosis (KAFO) with myoelectric activation and inhibition.
    Sawicki GS; Ferris DP
    J Neuroeng Rehabil; 2009 Jun; 6():23. PubMed ID: 19549338
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Template model inspired leg force feedback based control can assist human walking.
    Zhao G; Sharbafi M; Vlutters M; van Asseldonk E; Seyfarth A
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():473-478. PubMed ID: 28813865
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.