These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

256 related articles for article (PubMed ID: 28713814)

  • 41. Leachate generation rate modeling using artificial intelligence algorithms aided by input optimization method for an MSW landfill.
    Abunama T; Othman F; Ansari M; El-Shafie A
    Environ Sci Pollut Res Int; 2019 Feb; 26(4):3368-3381. PubMed ID: 30511225
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Prediction of nutritive values in grass silages: I. Nutrient digestibility and energy concentrations using nutrient compositions and fermentation characteristics.
    Yan T; Agnew RE
    J Anim Sci; 2004 May; 82(5):1367-79. PubMed ID: 15144077
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Prediction of Bovine Serum Albumin-Water Partition Coefficients of a Wide Variety of Neutral Organic Compounds by Means of Support Vector Machine.
    Golmohammadi H; Dashtbozorgi Z; Acree WE
    Mol Inform; 2012 Dec; 31(11-12):867-78. PubMed ID: 27476740
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Effects of reduced-oil corn distillers dried grains with solubles composition on digestible and metabolizable energy value and prediction in growing pigs.
    Kerr BJ; Dozier WA; Shurson GC
    J Anim Sci; 2013 Jul; 91(7):3231-43. PubMed ID: 23798517
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Chemical Composition and Digestibility of Major Feed Resources in Tanqua-Abergelle District of Central Tigray, Northern Ethiopia.
    Gebremariam T; Belay S
    ScientificWorldJournal; 2021; 2021():5234831. PubMed ID: 34220364
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Application of ANN and SVM for prediction nutrients in rivers.
    Stamenković LJ
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2021; 56(8):867-873. PubMed ID: 34061713
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Comparisons of prediction models of quality of life after laparoscopic cholecystectomy: a longitudinal prospective study.
    Shi HY; Lee HH; Tsai JT; Ho WH; Chen CF; Lee KT; Chiu CC
    PLoS One; 2012; 7(12):e51285. PubMed ID: 23284677
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Energy value of pig feeds: effect of pig body weight and energy evaluation system.
    Noblet J; van Milgen J
    J Anim Sci; 2004; 82 E-Suppl():E229-238. PubMed ID: 15471802
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Using artificial neural networks to predict pH, ammonia, and volatile fatty acid concentrations in the rumen.
    Li MM; Sengupta S; Hanigan MD
    J Dairy Sci; 2019 Oct; 102(10):8850-8861. PubMed ID: 31378500
    [TBL] [Abstract][Full Text] [Related]  

  • 50. The development of a metabolizable energy system for horses.
    Kienzle E; Zeyner A
    J Anim Physiol Anim Nutr (Berl); 2010 Dec; 94(6):e231-40. PubMed ID: 20626500
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Neutral detergent fiber rather than other dietary fiber types as an independent variable increases the accuracy of prediction equation for digestible energy in feeds for growing pigs.
    Choi H; Sung JY; Kim BG
    Asian-Australas J Anim Sci; 2020 Apr; 33(4):615-622. PubMed ID: 31480188
    [TBL] [Abstract][Full Text] [Related]  

  • 52. A novel QSAR model for prediction of apoptosis-inducing activity of 4-aryl-4-H-chromenes based on support vector machine.
    Fatemi MH; Gharaghani S
    Bioorg Med Chem; 2007 Dec; 15(24):7746-54. PubMed ID: 17870538
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Methodologies for energy evaluation of pig and poultry feeds: A review.
    Noblet J; Wu SB; Choct M
    Anim Nutr; 2022 Mar; 8(1):185-203. PubMed ID: 34977388
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Monitoring rice nitrogen status using hyperspectral reflectance and artificial neural network.
    Yi QX; Huang JF; Wang FM; Wang XZ; Liu ZY
    Environ Sci Technol; 2007 Oct; 41(19):6770-5. PubMed ID: 17969693
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Comparative total tract digestibility of dietary energy and nutrients in growing pigs and adult sows.
    Le Goff G; Noblet J
    J Anim Sci; 2001 Sep; 79(9):2418-27. PubMed ID: 11583429
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Estimating digestible energy values of feeds and diets and integrating those values into net energy systems.
    Weiss WP; Tebbe AW
    Transl Anim Sci; 2019 Jun; 3(3):953-961. PubMed ID: 32704859
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Multi-region machine learning-based novel ensemble approaches for predicting COVID-19 pandemic in Africa.
    Ibrahim Z; Tulay P; Abdullahi J
    Environ Sci Pollut Res Int; 2023 Jan; 30(2):3621-3643. PubMed ID: 35948797
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Energy evaluation of extruded compound foods for dogs by near-infrared spectroscopy.
    Castrillo C; Baucells M; Vicente F; Muñoz F; Andueza D
    J Anim Physiol Anim Nutr (Berl); 2005; 89(3-6):194-8. PubMed ID: 15787994
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Waste-to-energy as a tool of circular economy: Prediction of higher heating value of biomass by artificial neural network (ANN) and multivariate linear regression (MLR).
    Ezzahra Yatim F; Boumanchar I; Srhir B; Chhiti Y; Jama C; Ezzahrae M'hamdi Alaoui F
    Waste Manag; 2022 Nov; 153():293-303. PubMed ID: 36174430
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Machine learning in the estimation of CRISPR-Cas9 cleavage sites for plant system.
    Das J; Kumar S; Mishra DC; Chaturvedi KK; Paul RK; Kairi A
    Front Genet; 2022; 13():1085332. PubMed ID: 36699447
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.