These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 28713821)

  • 1. Comparative Analysis of the Cell Fates of Induced Schwann Cells from Subcutaneous Fat Tissue and Naïve Schwann Cells in the Sciatic Nerve Injury Model.
    Zhang M; Jiang MH; Kim DW; Ahn W; Chung E; Son Y; Chi G
    Biomed Res Int; 2017; 2017():1252851. PubMed ID: 28713821
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Adipose-derived stem cells enhance peripheral nerve regeneration.
    di Summa PG; Kingham PJ; Raffoul W; Wiberg M; Terenghi G; Kalbermatten DF
    J Plast Reconstr Aesthet Surg; 2010 Sep; 63(9):1544-52. PubMed ID: 19828391
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Schwann-like cells from human melanocytes and their fate in sciatic nerve injury.
    Chi GF; Kim DW; Jiang MH; Yoon KJ; Son Y
    Neuroreport; 2011 Aug; 22(12):603-8. PubMed ID: 21753712
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Improving nerve regeneration of acellular nerve allografts seeded with SCs bridging the sciatic nerve defects of rat.
    Sun XH; Che YQ; Tong XJ; Zhang LX; Feng Y; Xu AH; Tong L; Jia H; Zhang X
    Cell Mol Neurobiol; 2009 May; 29(3):347-53. PubMed ID: 18987968
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sciatic nerve regeneration by cocultured Schwann cells and stem cells on microporous nerve conduits.
    Dai LG; Huang GS; Hsu SH
    Cell Transplant; 2013; 22(11):2029-39. PubMed ID: 23192007
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Regeneration patterns influence hindlimb automutilation after sciatic nerve repair using stem cells in rats.
    Haselbach D; Raffoul W; Larcher L; Tremp M; Kalbermatten DF; di Summa PG
    Neurosci Lett; 2016 Nov; 634():153-159. PubMed ID: 27760382
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sciatic nerve regeneration by transplantation of in vitro differentiated nucleus pulposus progenitor cells.
    Ishii T; Sakai D; Schol J; Nakai T; Suyama K; Watanabe M
    Regen Med; 2017 Apr; 12(4):365-376. PubMed ID: 28621199
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The regeneration potential after human and autologous stem cell transplantation in a rat sciatic nerve injury model can be monitored by MRI.
    Tremp M; Meyer Zu Schwabedissen M; Kappos EA; Engels PE; Fischmann A; Scherberich A; Schaefer DJ; Kalbermatten DF
    Cell Transplant; 2015; 24(2):203-11. PubMed ID: 24380629
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Skin derived precursor Schwann cells improve behavioral recovery for acute and delayed nerve repair.
    Khuong HT; Kumar R; Senjaya F; Grochmal J; Ivanovic A; Shakhbazau A; Forden J; Webb A; Biernaskie J; Midha R
    Exp Neurol; 2014 Apr; 254():168-79. PubMed ID: 24440805
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Human eyelid adipose tissue-derived Schwann cells promote regeneration of a transected sciatic nerve.
    Wang G; Cao L; Wang Y; Hua Y; Cai Z; Chen J; Chen L; Jin Y; Niu L; Shen H; Lu Y; Shen Z
    Sci Rep; 2017 Mar; 7():43248. PubMed ID: 28256528
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nerve repair with adipose-derived stem cells protects dorsal root ganglia neurons from apoptosis.
    Reid AJ; Sun M; Wiberg M; Downes S; Terenghi G; Kingham PJ
    Neuroscience; 2011 Dec; 199():515-22. PubMed ID: 22020320
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Directly induced human Schwann cell precursors as a valuable source of Schwann cells.
    Kim HS; Kim JY; Song CL; Jeong JE; Cho YS
    Stem Cell Res Ther; 2020 Jun; 11(1):257. PubMed ID: 32586386
    [TBL] [Abstract][Full Text] [Related]  

  • 13. First human experience with autologous Schwann cells to supplement sciatic nerve repair: report of 2 cases with long-term follow-up.
    Gersey ZC; Burks SS; Anderson KD; Dididze M; Khan A; Dietrich WD; Levi AD
    Neurosurg Focus; 2017 Mar; 42(3):E2. PubMed ID: 28245668
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Co-Graft of Bone Marrow Stromal Cells and Schwann Cells Into Acellular Nerve Scaffold for Sciatic Nerve Regeneration in Rats.
    Zhou LN; Zhang JW; Liu XL; Zhou LH
    J Oral Maxillofac Surg; 2015 Aug; 73(8):1651-60. PubMed ID: 25959876
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Glial differentiation of human adipose-derived stem cells: implications for cell-based transplantation therapy.
    Tomita K; Madura T; Sakai Y; Yano K; Terenghi G; Hosokawa K
    Neuroscience; 2013 Apr; 236():55-65. PubMed ID: 23370324
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transplantation of bone-marrow-derived cells into a nerve guide resulted in transdifferentiation into Schwann cells and effective regeneration of transected mouse sciatic nerve.
    Pereira Lopes FR; Frattini F; Marques SA; Almeida FM; de Moura Campos LC; Langone F; Lora S; Borojevic R; Martinez AM
    Micron; 2010 Oct; 41(7):783-90. PubMed ID: 20728816
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Human adipose-derived mesenchymal stem cells systemically injected promote peripheral nerve regeneration in the mouse model of sciatic crush.
    Marconi S; Castiglione G; Turano E; Bissolotti G; Angiari S; Farinazzo A; Constantin G; Bedogni G; Bedogni A; Bonetti B
    Tissue Eng Part A; 2012 Jun; 18(11-12):1264-72. PubMed ID: 22332955
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Curcumin accelerates the repair of sciatic nerve injury in rats through reducing Schwann cells apoptosis and promoting myelinization.
    Zhao Z; Li X; Li Q
    Biomed Pharmacother; 2017 Aug; 92():1103-1110. PubMed ID: 28622711
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Schwann cells differentiated from spheroid-forming cells of rat subcutaneous fat tissue myelinate axons in the spinal cord injury.
    Chi GF; Kim MR; Kim DW; Jiang MH; Son Y
    Exp Neurol; 2010 Apr; 222(2):304-17. PubMed ID: 20083105
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Long-Gap Peripheral Nerve Injury Therapy Using Human Skeletal Muscle-Derived Stem Cells (Sk-SCs): An Achievement of Significant Morphological, Numerical and Functional Recovery.
    Tamaki T; Hirata M; Nakajima N; Saito K; Hashimoto H; Soeda S; Uchiyama Y; Watanabe M
    PLoS One; 2016; 11(11):e0166639. PubMed ID: 27846318
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.