These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

250 related articles for article (PubMed ID: 28713845)

  • 21. Simultaneous Existence of Confined and Delocalized Vibrational Modes in Colloidal Quantum Dots.
    Liu A; Almeida DB; Bae WK; Padilha LA; Cundiff ST
    J Phys Chem Lett; 2019 Oct; 10(20):6144-6150. PubMed ID: 31556615
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Ligands Slow Down Pure-Dephasing in Semiconductor Quantum Dots.
    Liu J; Kilina SV; Tretiak S; Prezhdo OV
    ACS Nano; 2015 Sep; 9(9):9106-16. PubMed ID: 26284384
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Exciton dephasing in quantum dot molecules.
    Borri P; Langbein W; Woggon U; Schwab M; Bayer M; Fafard S; Wasilewski Z; Hawrylak P
    Phys Rev Lett; 2003 Dec; 91(26 Pt 1):267401. PubMed ID: 14754087
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Exciton-phonon scattering and nonradiative relaxation of excited carriers in hydrothermally synthesized CdTe quantum dots.
    Jagtap AM; Khatei J; Koteswara Rao KS
    Phys Chem Chem Phys; 2015 Nov; 17(41):27579-87. PubMed ID: 26426345
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Phonon anharmonicity-induced decoherence slowing down in exciton-phonon systems.
    Pouthier V
    J Phys Condens Matter; 2010 Jun; 22(25):255601. PubMed ID: 21393804
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Exciton Dynamics in Droplet Epitaxial Quantum Dots Grown on (311)A-Oriented Substrates.
    Abbarchi M; Mano T; Kuroda T; Sakoda K
    Nanomaterials (Basel); 2020 Sep; 10(9):. PubMed ID: 32937876
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Long-Lived Exciton Coherence in Mixed-Halide Perovskite Crystals.
    Grisard S; Trifonov AV; Solovev IA; Yakovlev DR; Hordiichuk O; Kovalenko MV; Bayer M; Akimov IA
    Nano Lett; 2023 Aug; 23(16):7397-7403. PubMed ID: 37548595
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Exciton fine structure and spin relaxation in semiconductor colloidal quantum dots.
    Kim J; Wong CY; Scholes GD
    Acc Chem Res; 2009 Aug; 42(8):1037-46. PubMed ID: 19425542
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Engineering the Impact of Phonon Dephasing on the Coherence of a WSe_{2} Single-Photon Source via Cavity Quantum Electrodynamics.
    Mitryakhin VN; Steinhoff A; Drawer JC; Shan H; Florian M; Lackner L; Han B; Eilenberger F; Tongay SA; Watanabe K; Taniguchi T; Antón-Solanas C; Predojević A; Gies C; Esmann M; Schneider C
    Phys Rev Lett; 2024 May; 132(20):206903. PubMed ID: 38829069
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Tunable phononic coupling in excitonic quantum emitters.
    Ripin A; Peng R; Zhang X; Chakravarthi S; He M; Xu X; Fu KM; Cao T; Li M
    Nat Nanotechnol; 2023 Sep; 18(9):1020-1026. PubMed ID: 37264087
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Role of Confined Optical Phonons in Exciton Generation in Spherical Quantum Dot.
    Singh R; Dutta M; Stroscio MA
    Materials (Basel); 2022 Aug; 15(16):. PubMed ID: 36013681
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Reducing Phonon-Induced Decoherence in Solid-State Single-Photon Sources with Cavity Quantum Electrodynamics.
    Grange T; Somaschi N; Antón C; De Santis L; Coppola G; Giesz V; Lemaître A; Sagnes I; Auffèves A; Senellart P
    Phys Rev Lett; 2017 Jun; 118(25):253602. PubMed ID: 28696749
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Advanced in-situ electron-beam lithography for deterministic nanophotonic device processing.
    Kaganskiy A; Gschrey M; Schlehahn A; Schmidt R; Schulze JH; Heindel T; Strittmatter A; Rodt S; Reitzenstein S
    Rev Sci Instrum; 2015 Jul; 86(7):073903. PubMed ID: 26233395
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Long-time correlation in non-Markovian dephasing of an exciton-phonon system in InAs quantum dots.
    Tahara H; Ogawa Y; Minami F; Akahane K; Sasaki M
    Phys Rev Lett; 2014 Apr; 112(14):147404. PubMed ID: 24766013
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Optical two-dimensional fourier transform spectroscopy of semiconductor quantum wells.
    Cundiff ST; Zhang T; Bristow AD; Karaiskaj D; Dai X
    Acc Chem Res; 2009 Sep; 42(9):1423-32. PubMed ID: 19555068
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Bright, long-lived and coherent excitons in carbon nanotube quantum dots.
    Hofmann MS; Glückert JT; Noé J; Bourjau C; Dehmel R; Högele A
    Nat Nanotechnol; 2013 Jul; 8(7):502-5. PubMed ID: 23812185
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Peculiar anharmonicity of Ruddlesden Popper metal halides: temperature-dependent phonon dephasing.
    Rojas-Gatjens E; Silva-Acuña C; Kandada ARS
    Mater Horiz; 2022 Jan; 9(1):492-499. PubMed ID: 34904992
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Study of the Electron-Phonon Coupling in PbS/MnTe Quantum Dots Based on Temperature-Dependent Photoluminescence.
    Halim ND; Zaini MS; Talib ZA; Liew JYC; Kamarudin MA
    Micromachines (Basel); 2022 Mar; 13(3):. PubMed ID: 35334735
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Modelling exciton-phonon interactions in optically driven quantum dots.
    Nazir A; McCutcheon DP
    J Phys Condens Matter; 2016 Mar; 28(10):103002. PubMed ID: 26882465
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Phonon-assisted up-conversion photoluminescence of quantum dots.
    Ye Z; Lin X; Wang N; Zhou J; Zhu M; Qin H; Peng X
    Nat Commun; 2021 Jul; 12(1):4283. PubMed ID: 34257296
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.