These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
192 related articles for article (PubMed ID: 28714123)
1. Defect Engineering of Chalcogen-Tailored Oxygen Electrocatalysts for Rechargeable Quasi-Solid-State Zinc-Air Batteries. Fu J; Hassan FM; Zhong C; Lu J; Liu H; Yu A; Chen Z Adv Mater; 2017 Sep; 29(35):. PubMed ID: 28714123 [TBL] [Abstract][Full Text] [Related]
2. A Composite Bifunctional Oxygen Electrocatalyst for High-Performance Rechargeable Zinc-Air Batteries. Liu JN; Li BQ; Zhao CX; Yu J; Zhang Q ChemSusChem; 2020 Mar; 13(6):1529-1536. PubMed ID: 31845530 [TBL] [Abstract][Full Text] [Related]
3. Ni-Fe Nitride Nanoplates on Nitrogen-Doped Graphene as a Synergistic Catalyst for Reversible Oxygen Evolution Reaction and Rechargeable Zn-Air Battery. Fan Y; Ida S; Staykov A; Akbay T; Hagiwara H; Matsuda J; Kaneko K; Ishihara T Small; 2017 Jul; 13(25):. PubMed ID: 28509363 [TBL] [Abstract][Full Text] [Related]
4. An Oxygen-Vacancy-Rich Semiconductor-Supported Bifunctional Catalyst for Efficient and Stable Zinc-Air Batteries. Liu G; Li J; Fu J; Jiang G; Lui G; Luo D; Deng YP; Zhang J; Cano ZP; Yu A; Su D; Bai Z; Yang L; Chen Z Adv Mater; 2019 Feb; 31(6):e1806761. PubMed ID: 30536845 [TBL] [Abstract][Full Text] [Related]
5. A ΔE = 0.63 V Bifunctional Oxygen Electrocatalyst Enables High-Rate and Long-Cycling Zinc-Air Batteries. Zhao CX; Liu JN; Wang J; Ren D; Yu J; Chen X; Li BQ; Zhang Q Adv Mater; 2021 Apr; 33(15):e2008606. PubMed ID: 33656780 [TBL] [Abstract][Full Text] [Related]
6. Identification of catalytic sites for oxygen reduction and oxygen evolution in N-doped graphene materials: Development of highly efficient metal-free bifunctional electrocatalyst. Yang HB; Miao J; Hung SF; Chen J; Tao HB; Wang X; Zhang L; Chen R; Gao J; Chen HM; Dai L; Liu B Sci Adv; 2016 Apr; 2(4):e1501122. PubMed ID: 27152333 [TBL] [Abstract][Full Text] [Related]
7. Nitrogen-Doped Graphene on Transition Metal Substrates as Efficient Bifunctional Catalysts for Oxygen Reduction and Oxygen Evolution Reactions. Zhou S; Liu N; Wang Z; Zhao J ACS Appl Mater Interfaces; 2017 Jul; 9(27):22578-22587. PubMed ID: 28621128 [TBL] [Abstract][Full Text] [Related]
8. Hierarchical nanostructured NiCo2O4 as an efficient bifunctional non-precious metal catalyst for rechargeable zinc-air batteries. Prabu M; Ketpang K; Shanmugam S Nanoscale; 2014 Mar; 6(6):3173-81. PubMed ID: 24496578 [TBL] [Abstract][Full Text] [Related]
9. Co Nanoparticles Confined in 3D Nitrogen-Doped Porous Carbon Foams as Bifunctional Electrocatalysts for Long-Life Rechargeable Zn-Air Batteries. Jiang H; Liu Y; Li W; Li J Small; 2018 Mar; 14(13):e1703739. PubMed ID: 29430832 [TBL] [Abstract][Full Text] [Related]
10. A Stable Bifunctional Catalyst for Rechargeable Zinc-Air Batteries: Iron-Cobalt Nanoparticles Embedded in a Nitrogen-Doped 3D Carbon Matrix. Liu X; Wang L; Yu P; Tian C; Sun F; Ma J; Li W; Fu H Angew Chem Int Ed Engl; 2018 Dec; 57(49):16166-16170. PubMed ID: 30302889 [TBL] [Abstract][Full Text] [Related]
11. N,S-Codoped hierarchical porous carbon spheres embedded with cobalt nanoparticles as efficient bifunctional oxygen electrocatalysts for rechargeable zinc-air batteries. Zhu X; Dai J; Li L; Wu Z; Chen S Nanoscale; 2019 Nov; 11(44):21302-21310. PubMed ID: 31670323 [TBL] [Abstract][Full Text] [Related]
12. "Ship in a Bottle" Design of Highly Efficient Bifunctional Electrocatalysts for Long-Lasting Rechargeable Zn-Air Batteries. Zhang Z; Deng YP; Xing Z; Luo D; Sy S; Cano ZP; Liu G; Jiang Y; Chen Z ACS Nano; 2019 Jun; 13(6):7062-7072. PubMed ID: 31095373 [TBL] [Abstract][Full Text] [Related]
14. Edge Defect Engineering of Nitrogen-Doped Carbon for Oxygen Electrocatalysts in Zn-Air Batteries. Wang Q; Lei Y; Zhu Y; Wang H; Feng J; Ma G; Wang Y; Li Y; Nan B; Feng Q; Lu Z; Yu H ACS Appl Mater Interfaces; 2018 Sep; 10(35):29448-29456. PubMed ID: 30088907 [TBL] [Abstract][Full Text] [Related]
15. Cobalt Phosphide Coupled with Heteroatom-Doped Nanocarbon Hybrid Electroctalysts for Efficient, Long-Life Rechargeable Zinc-Air Batteries. Ahn SH; Manthiram A Small; 2017 Oct; 13(40):. PubMed ID: 28861942 [TBL] [Abstract][Full Text] [Related]
16. Large-scale defect-rich iron/nitrogen co-doped graphene-based materials as the excellent bifunctional electrocatalyst for liquid and flexible all-solid-state zinc-air batteries. Liu Y; Bao J; Li Z; Zhang L; Zhang S; Wang L; Niu X; Sun P; Xu L J Colloid Interface Sci; 2022 Feb; 607(Pt 2):1201-1214. PubMed ID: 34571307 [TBL] [Abstract][Full Text] [Related]
17. Single-Site Active Iron-Based Bifunctional Oxygen Catalyst for a Compressible and Rechargeable Zinc-Air Battery. Ma L; Chen S; Pei Z; Huang Y; Liang G; Mo F; Yang Q; Su J; Gao Y; Zapien JA; Zhi C ACS Nano; 2018 Feb; 12(2):1949-1958. PubMed ID: 29432686 [TBL] [Abstract][Full Text] [Related]
18. Defect-Engineered Co Tang W; Teng K; Guo W; Gu F; Li B; Qi R; Liu R; Lin Y; Wu M; Chen Y Small; 2022 Jul; 18(27):e2202194. PubMed ID: 35665997 [TBL] [Abstract][Full Text] [Related]
19. Integrating NiCo Alloys with Their Oxides as Efficient Bifunctional Cathode Catalysts for Rechargeable Zinc-Air Batteries. Liu X; Park M; Kim MG; Gupta S; Wu G; Cho J Angew Chem Int Ed Engl; 2015 Aug; 54(33):9654-8. PubMed ID: 26118973 [TBL] [Abstract][Full Text] [Related]
20. Advanced zinc-air batteries based on high-performance hybrid electrocatalysts. Li Y; Gong M; Liang Y; Feng J; Kim JE; Wang H; Hong G; Zhang B; Dai H Nat Commun; 2013; 4():1805. PubMed ID: 23651993 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]