These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
192 related articles for article (PubMed ID: 28714123)
21. Highly active bifunctional oxygen electrocatalysts derived from nickel- or cobalt-phytic acid xerogel for zinc-air batteries. Wang S; Nam G; Li P; Jang H; Wang J; Kim MG; Wu Z; Liu X; Cho J Nanoscale; 2018 Aug; 10(33):15834-15841. PubMed ID: 30105344 [TBL] [Abstract][Full Text] [Related]
22. Electrospun Thin-Walled CuCo Wang X; Li Y; Jin T; Meng J; Jiao L; Zhu M; Chen J Nano Lett; 2017 Dec; 17(12):7989-7994. PubMed ID: 29166026 [TBL] [Abstract][Full Text] [Related]
23. Highly Crumpled Hybrids of Nitrogen/Sulfur Dual-Doped Graphene and Co Tang Y; Jing F; Xu Z; Zhang F; Mai Y; Wu D ACS Appl Mater Interfaces; 2017 Apr; 9(14):12340-12347. PubMed ID: 28368601 [TBL] [Abstract][Full Text] [Related]
24. Plasma-Treated Ultrathin Ternary FePSe Hao Y; Huang A; Han S; Huang H; Song J; Sun X; Wang Z; Li L; Hu F; Xue J; Peng S ACS Appl Mater Interfaces; 2020 Jul; 12(26):29393-29403. PubMed ID: 32490656 [TBL] [Abstract][Full Text] [Related]
25. One-Pot Synthesis of Co Wang Q; Miao H; Sun S; Xue Y; Liu Z Chemistry; 2018 Oct; 24(55):14816-14823. PubMed ID: 30063103 [TBL] [Abstract][Full Text] [Related]
26. Doped lanthanum nickelates with a layered perovskite structure as bifunctional cathode catalysts for rechargeable metal-air batteries. Jung KN; Jung JH; Im WB; Yoon S; Shin KH; Lee JW ACS Appl Mater Interfaces; 2013 Oct; 5(20):9902-7. PubMed ID: 24053465 [TBL] [Abstract][Full Text] [Related]
27. Defect Engineering of Carbon-based Electrocatalysts for Rechargeable Zinc-air Batteries. Dong F; Wu M; Zhang G; Liu X; Rawach D; Tavares AC; Sun S Chem Asian J; 2020 Nov; 15(22):3737-3751. PubMed ID: 32997441 [TBL] [Abstract][Full Text] [Related]
28. Co Li X; Dong F; Xu N; Zhang T; Li K; Qiao J ACS Appl Mater Interfaces; 2018 May; 10(18):15591-15601. PubMed ID: 29616793 [TBL] [Abstract][Full Text] [Related]
29. Novel MOF-Derived Co@N-C Bifunctional Catalysts for Highly Efficient Zn-Air Batteries and Water Splitting. Zhang M; Dai Q; Zheng H; Chen M; Dai L Adv Mater; 2018 Mar; 30(10):. PubMed ID: 29349841 [TBL] [Abstract][Full Text] [Related]
30. Bimetallic Metal-Organic-Framework/Reduced Graphene Oxide Composites as Bifunctional Electrocatalysts for Rechargeable Zn-Air Batteries. Zheng X; Cao Y; Liu D; Cai M; Ding J; Liu X; Wang J; Hu W; Zhong C ACS Appl Mater Interfaces; 2019 May; 11(17):15662-15669. PubMed ID: 30964638 [TBL] [Abstract][Full Text] [Related]
31. Atomic Ni and Cu co-anchored 3D nanoporous graphene as an efficient oxygen reduction electrocatalyst for zinc-air batteries. Cheng Y; Wu H; Han J; Zhong S; Huang S; Chu S; Song S; Reddy KM; Wang X; Wu S; Zhuang X; Johnson I; Liu P; Chen M Nanoscale; 2021 Jun; 13(24):10862-10870. PubMed ID: 34114571 [TBL] [Abstract][Full Text] [Related]
32. Continuous fabrication of a MnS/Co nanofibrous air electrode for wide integration of rechargeable zinc-air batteries. Wang Y; Fu J; Zhang Y; Li M; Hassan FM; Li G; Chen Z Nanoscale; 2017 Oct; 9(41):15865-15872. PubMed ID: 28994845 [TBL] [Abstract][Full Text] [Related]
33. Concurrently Realizing Geometric Confined Growth and Doping of Transition Metals within Graphene Hosts for Bifunctional Electrocatalysts toward a Solid-State Rechargeable Micro-Zn-Air Battery. Jiang T; Hu H; Lei F; Hu J; Wu M; Ho D ACS Appl Mater Interfaces; 2020 Aug; 12(34):38031-38044. PubMed ID: 32799437 [TBL] [Abstract][Full Text] [Related]
34. Pomegranate-Inspired Design of Highly Active and Durable Bifunctional Electrocatalysts for Rechargeable Metal-Air Batteries. Li G; Wang X; Fu J; Li J; Park MG; Zhang Y; Lui G; Chen Z Angew Chem Int Ed Engl; 2016 Apr; 55(16):4977-82. PubMed ID: 26970076 [TBL] [Abstract][Full Text] [Related]
35. Oxygen Vacancy-Rich In-Doped CoO/CoP Heterostructure as an Effective Air Cathode for Rechargeable Zn-Air Batteries. Jin W; Chen J; Liu B; Hu J; Wu Z; Cai W; Fu G Small; 2019 Nov; 15(46):e1904210. PubMed ID: 31559688 [TBL] [Abstract][Full Text] [Related]
36. Designing Binary Ru-Sn Oxides with Optimized Performances for the Air Electrode of Rechargeable Zinc-Air Batteries. You TH; Hu CC ACS Appl Mater Interfaces; 2018 Mar; 10(12):10064-10075. PubMed ID: 29509399 [TBL] [Abstract][Full Text] [Related]
37. Iron Carbide Nanoparticles Encapsulated in Mesoporous Fe-N-Doped Graphene-Like Carbon Hybrids as Efficient Bifunctional Oxygen Electrocatalysts. Jiang H; Yao Y; Zhu Y; Liu Y; Su Y; Yang X; Li C ACS Appl Mater Interfaces; 2015 Sep; 7(38):21511-20. PubMed ID: 26371772 [TBL] [Abstract][Full Text] [Related]
38. Scalable 3-D Carbon Nitride Sponge as an Efficient Metal-Free Bifunctional Oxygen Electrocatalyst for Rechargeable Zn-Air Batteries. Shinde SS; Lee CH; Sami A; Kim DH; Lee SU; Lee JH ACS Nano; 2017 Jan; 11(1):347-357. PubMed ID: 28001038 [TBL] [Abstract][Full Text] [Related]
39. Exploiting a High-Performance "Double-Carbon" Structure Co Sun X; Gong Q; Liang Y; Wu M; Xu N; Gong P; Sun S; Qiao J ACS Appl Mater Interfaces; 2020 Aug; 12(34):38202-38210. PubMed ID: 32805974 [TBL] [Abstract][Full Text] [Related]
40. Engineering cobalt nitride nanosheet arrays with rich nitrogen defects as a bifunctional robust oxygen electrocatalyst in rechargeable Zn-air batteries. Hu Y; Guo M; Hu C; Dong J; Yan P; Taylor Isimjan T; Yang X J Colloid Interface Sci; 2022 Feb; 608(Pt 2):2066-2074. PubMed ID: 34752980 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]