BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

222 related articles for article (PubMed ID: 28714211)

  • 41. Simultaneous determination of cations, zwitterions and neutral compounds using mixed-mode reversed-phase and cation-exchange high-performance liquid chromatography.
    Li J; Shao S; Jaworsky MS; Kurtulik PT
    J Chromatogr A; 2008 Mar; 1185(2):185-93. PubMed ID: 18304563
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Optimization of a preparative multimodal ion exchange step for purification of a potential malaria vaccine.
    Paul J; Jensen S; Dukart A; Cornelissen G
    J Chromatogr A; 2014 Oct; 1366():38-44. PubMed ID: 25271026
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Method development for the separation of monoclonal antibody charge variants in cation exchange chromatography, Part II: pH gradient approach.
    Fekete S; Beck A; Fekete J; Guillarme D
    J Pharm Biomed Anal; 2015 Jan; 102():282-9. PubMed ID: 25459925
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Tuning selectivity in cation-exchange chromatography applied for monoclonal antibody separations, part 2: Evaluation of recent stationary phases.
    Murisier A; Farsang E; Horváth K; Lauber M; Beck A; Guillarme D; Fekete S
    J Pharm Biomed Anal; 2019 Aug; 172():320-328. PubMed ID: 31085394
    [TBL] [Abstract][Full Text] [Related]  

  • 45. [Chromatographic behavior of basic drugs on thioether-embedded benzenesulfonate silica stationary phases].
    Wang X; Chen L
    Se Pu; 2018 Sep; 36(9):850-857. PubMed ID: 30251512
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Purification of common light chain IgG-like bispecific antibodies using highly linear pH gradients.
    Sharkey B; Pudi S; Wallace Moyer I; Zhong L; Prinz B; Baruah H; Lynaugh H; Kumar S; Wittrup KD; Nett JH
    MAbs; 2017; 9(2):257-268. PubMed ID: 27937066
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Improving pH gradient cation-exchange chromatography of monoclonal antibodies by controlling ionic strength.
    Zhang L; Patapoff T; Farnan D; Zhang B
    J Chromatogr A; 2013 Jan; 1272():56-64. PubMed ID: 23253120
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Theory and applications of a novel ion exchange chromatographic technology using controlled pH gradients for separating proteins on anionic and cationic stationary phases.
    Tsonev LI; Hirsh AG
    J Chromatogr A; 2008 Jul; 1200(2):166-82. PubMed ID: 18554604
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Hydrophilic interaction/weak cation-exchange mixed-mode chromatography for chitooligosaccharides separation.
    Dong X; Shen A; Gou Z; Chen D; Liang X
    Carbohydr Res; 2012 Nov; 361():195-9. PubMed ID: 23036930
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Inactivation of viruses using novel protein A wash buffers.
    Bolton GR; Selvitelli KR; Iliescu I; Cecchini DJ
    Biotechnol Prog; 2015; 31(2):406-13. PubMed ID: 25482293
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Controlled conductivity at low pH in Protein L chromatography enables separation of bispecific and other antibody formats by their binding valency.
    Chen C; Wakabayashi T; Muraoka M; Shu F; Wei Shan C; Chor Kun C; Tim Jang C; Soehano I; Shimizu Y; Igawa T; Nezu JI
    MAbs; 2019; 11(4):632-638. PubMed ID: 30898021
    [TBL] [Abstract][Full Text] [Related]  

  • 52. A thermodynamic evaluation of antibody-surface interactions in multimodal cation exchange chromatography.
    Gudhka RB; Roush DJ; Cramer SM
    J Chromatogr A; 2020 Sep; 1628():461479. PubMed ID: 32822997
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Insights in understanding aggregate formation and dissociation in cation exchange chromatography for a structurally unstable Fc-fusion protein.
    Chen Z; Huang C; Chennamsetty N; Xu X; Li ZJ
    J Chromatogr A; 2016 Aug; 1460():110-22. PubMed ID: 27452990
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Quantifying orthogonality and separability: A method for optimizing resin selection and design.
    Bilodeau CL; Vecchiarello NA; Altern S; Cramer SM
    J Chromatogr A; 2020 Sep; 1628():461429. PubMed ID: 32822971
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Mechanistic modeling based process development for monoclonal antibody monomer-aggregate separations in multimodal cation exchange chromatography.
    Zhang L; Parasnavis S; Li Z; Chen J; Cramer S
    J Chromatogr A; 2019 Sep; 1602():317-325. PubMed ID: 31248584
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Effect of mobile phase additives on solute retention at low aqueous pH in hydrophilic interaction liquid chromatography.
    McCalley DV
    J Chromatogr A; 2017 Feb; 1483():71-79. PubMed ID: 28069167
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Unfolding of a model protein on ion exchange and mixed mode chromatography surfaces.
    Gospodarek AM; Hiser DE; O'Connell JP; Fernandez EJ
    J Chromatogr A; 2014 Aug; 1355():238-52. PubMed ID: 24997510
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Preparation of a weak anion exchange/hydrophobic interaction dual-function mixed-mode chromatography stationary phase for protein separation using click chemistry.
    Zhao K; Yang F; Xia H; Wang F; Song Q; Bai Q
    J Sep Sci; 2015 Mar; 38(5):703-10. PubMed ID: 25545916
    [TBL] [Abstract][Full Text] [Related]  

  • 59. High-throughput isotherm determination and thermodynamic modeling of protein adsorption on mixed mode adsorbents.
    Nfor BK; Noverraz M; Chilamkurthi S; Verhaert PD; van der Wielen LA; Ottens M
    J Chromatogr A; 2010 Oct; 1217(44):6829-50. PubMed ID: 20880532
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Use of mobile phase additives for the elution of bispecific and monoclonal antibodies from phenyl based hydrophobic interaction chromatography resins.
    Hall T; Kelly GM; Emery WR
    J Chromatogr B Analyt Technol Biomed Life Sci; 2018 Oct; 1096():20-30. PubMed ID: 30130673
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.