These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
207 related articles for article (PubMed ID: 28714453)
1. Preparation of nitrogen and sulfur co-doped ordered mesoporous carbon for enhanced microwave absorption performance. Yuan X; Xue X; Ma H; Guo S; Cheng L Nanotechnology; 2017 Sep; 28(37):375705. PubMed ID: 28714453 [TBL] [Abstract][Full Text] [Related]
2. Silica-Modified Ordered Mesoporous Carbon for Optimized Impedance-Matching Characteristic Enabling Lightweight and Effective Microwave Absorbers. Zhou P; Zhang J; Zhu H; Wang L; Wang X; Song Z; Zhang Q; Yu M; Liu Z; Xu T; Feng W; Feng X ACS Appl Mater Interfaces; 2020 May; 12(20):23252-23260. PubMed ID: 32343542 [TBL] [Abstract][Full Text] [Related]
3. Ultralight Three-Dimensional Hierarchical Cobalt Nanocrystals/N-Doped CNTs/Carbon Sponge Composites with a Hollow Skeleton toward Superior Microwave Absorption. Yang N; Luo ZX; Zhu GR; Chen SC; Wang XL; Wu G; Wang YZ ACS Appl Mater Interfaces; 2019 Oct; 11(39):35987-35998. PubMed ID: 31496213 [TBL] [Abstract][Full Text] [Related]
4. A covalent route for efficient surface modification of ordered mesoporous carbon as high performance microwave absorbers. Zhou H; Wang J; Zhuang J; Liu Q Nanoscale; 2013 Dec; 5(24):12502-11. PubMed ID: 24170288 [TBL] [Abstract][Full Text] [Related]
5. Three-Dimensional Ordered Mesoporous Carbon Spheres Modified with Ultrafine Zinc Oxide Nanoparticles for Enhanced Microwave Absorption Properties. Song Y; Yin F; Zhang C; Guo W; Han L; Yuan Y Nanomicro Lett; 2021 Feb; 13(1):76. PubMed ID: 34138330 [TBL] [Abstract][Full Text] [Related]
6. Yolk-shelled Co@SiO Wang B; Fu Y; Li J; Liu T J Colloid Interface Sci; 2022 Feb; 607(Pt 2):1540-1550. PubMed ID: 34583050 [TBL] [Abstract][Full Text] [Related]
7. Hierarchical Carbon Nanotube-Coated Carbon Fiber: Ultra Lightweight, Thin, and Highly Efficient Microwave Absorber. Singh SK; Akhtar MJ; Kar KK ACS Appl Mater Interfaces; 2018 Jul; 10(29):24816-24828. PubMed ID: 29973041 [TBL] [Abstract][Full Text] [Related]
8. Designed fabrication and characterization of three-dimensionally ordered arrays of core-shell magnetic mesoporous carbon microspheres. Yuan K; Che R; Cao Q; Sun Z; Yue Q; Deng Y ACS Appl Mater Interfaces; 2015 Mar; 7(9):5312-9. PubMed ID: 25647306 [TBL] [Abstract][Full Text] [Related]
9. Ultra-wide bandwidth with enhanced microwave absorption of electroless Ni-P coated tetrapod-shaped ZnO nano- and microstructures. Najim M; Modi G; Mishra YK; Adelung R; Singh D; Agarwala V Phys Chem Chem Phys; 2015 Sep; 17(35):22923-33. PubMed ID: 26267361 [TBL] [Abstract][Full Text] [Related]
10. Large-scale preparation of Co nanoparticles as an additive in carbon fiber for microwave absorption enhancement in C band. Zhu YX; Wang SF; Zhang YS; Wu ZG; Zhong B; Li DR; Wang FY; Feng JJ; Tang J; Zhuo RF; Yan PX Sci Rep; 2021 Jan; 11(1):2171. PubMed ID: 33500514 [TBL] [Abstract][Full Text] [Related]
11. Bead-like cobalt nanoparticles coated with dielectric SiO Wang B; Liao H; Xie X; Wu Q; Liu T J Colloid Interface Sci; 2020 Oct; 578():346-357. PubMed ID: 32535417 [TBL] [Abstract][Full Text] [Related]
12. Periodic Three-Dimensional Nitrogen-Doped Mesoporous Carbon Spheres Embedded with Co/Co Zhang C; Peng Y; Song Y; Li J; Yin F; Yuan Y ACS Appl Mater Interfaces; 2020 May; 12(21):24102-24111. PubMed ID: 32352278 [TBL] [Abstract][Full Text] [Related]
13. Preparation of Honeycomb SnO₂ Foams and Configuration-Dependent Microwave Absorption Features. Zhao B; Fan B; Xu Y; Shao G; Wang X; Zhao W; Zhang R ACS Appl Mater Interfaces; 2015 Dec; 7(47):26217-25. PubMed ID: 26552325 [TBL] [Abstract][Full Text] [Related]
14. Morphology Design of Co-electrospinning MnO-VN/C Nanofibers for Enhancing the Microwave Absorption Performances. Yuan X; Wang R; Huang W; Kong L; Guo S; Cheng L ACS Appl Mater Interfaces; 2020 Mar; 12(11):13208-13216. PubMed ID: 32092255 [TBL] [Abstract][Full Text] [Related]
15. Lightweight and efficient microwave absorbing materials based on walnut shell-derived nano-porous carbon. Qiu X; Wang L; Zhu H; Guan Y; Zhang Q Nanoscale; 2017 Jun; 9(22):7408-7418. PubMed ID: 28540377 [TBL] [Abstract][Full Text] [Related]
16. Tailoring conductive network nanostructures of ZIF-derived cobalt-decorated N-doped graphene/carbon nanotubes for microwave absorption applications. Wang K; Zhang S; Chu W; Li H; Chen Y; Chen B; Chen B; Liu H J Colloid Interface Sci; 2021 Jun; 591():463-473. PubMed ID: 33636669 [TBL] [Abstract][Full Text] [Related]
17. The Ordered Mesoporous Barium Ferrite Compounded with Nitrogen-Doped Reduced Graphene Oxide for Microwave Absorption Materials. He F; Zhao W; Cao L; Liu Z; Sun L; Zhang Z; Zhang H; Qi T Small; 2023 Aug; 19(32):e2205644. PubMed ID: 37078836 [TBL] [Abstract][Full Text] [Related]
18. Enhanced Microwave Absorption Properties of α-Fe₂O₃-Filled Ordered Mesoporous Carbon Nanorods. Wang Y; Wang L; Wu H Materials (Basel); 2013 Apr; 6(4):1520-1529. PubMed ID: 28809225 [TBL] [Abstract][Full Text] [Related]
19. Magnetic γ-Fe2O3, Fe3O4, and Fe nanoparticles confined within ordered mesoporous carbons as efficient microwave absorbers. Wang J; Zhou H; Zhuang J; Liu Q Phys Chem Chem Phys; 2015 Feb; 17(5):3802-12. PubMed ID: 25562071 [TBL] [Abstract][Full Text] [Related]
20. NiCo alloy/C nanocomposites derived from a Ni-doped ZIF-67 for lightweight microwave absorbers. Zhang X; Wang J; Fan Y; Ren H; Liu Z; Wang Y; Liu Y; Bai H; Kong L Nanotechnology; 2021 Jul; 32(38):. PubMed ID: 34116524 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]