These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 28714683)

  • 1. Regioselective Diversification of 2,1-Borazaronaphthalenes: Unlocking Isosteric Space via C-H Activation.
    Davies GHM; Jouffroy M; Sherafat F; Saeednia B; Howshall C; Molander GA
    J Org Chem; 2017 Aug; 82(15):8072-8084. PubMed ID: 28714683
    [TBL] [Abstract][Full Text] [Related]  

  • 2. 3-Boryl-2,1-borazaronaphthalene: Umpolung Reagents for Diversifying Naphthalene Isosteres.
    Compton JS; Saeednia B; Kelly CB; Molander GA
    J Org Chem; 2018 Aug; 83(16):9484-9491. PubMed ID: 29989812
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Accessing 2-(hetero)arylmethyl-, -allyl-, and -propargyl-2,1-borazaronaphthalenes: palladium-catalyzed cross-couplings of 2-(chloromethyl)-2,1-borazaronaphthalenes.
    Molander GA; Amani J; Wisniewski SR
    Org Lett; 2014 Nov; 16(22):6024-7. PubMed ID: 25365512
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Toward Efficient Nucleophilic Azaborine Building Blocks for the Synthesis of B-N Naphthyl (Hetero)arylmethane Isosteres.
    Amani J; Molander GA
    Org Lett; 2015 Jul; 17(14):3624-7. PubMed ID: 26146880
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Accessing an azaborine building block: synthesis and substitution reactions of 2-chloromethyl-2,1-borazaronaphthalene.
    Molander GA; Wisniewski SR; Amani J
    Org Lett; 2014 Nov; 16(21):5636-9. PubMed ID: 25317850
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Photoredox Catalysis Enables Access to N-Functionalized 2,1-Borazaronaphthalenes.
    Wang X; Davies GHM; Koschitzky A; Wisniewski SR; Kelly CB; Molander GA
    Org Lett; 2019 Apr; 21(8):2880-2884. PubMed ID: 30916973
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Accessing molecularly complex azaborines: palladium-catalyzed Suzuki-Miyaura cross-couplings of brominated 2,1-borazaronaphthalenes and potassium organotrifluoroborates.
    Molander GA; Wisniewski SR
    J Org Chem; 2014 Jul; 79(14):6663-78. PubMed ID: 24984003
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A convergent, modular approach to functionalized 2,1-borazaronaphthalenes from 2-aminostyrenes and potassium organotrifluoroborates.
    Wisniewski SR; Guenther CL; Argintaru OA; Molander GA
    J Org Chem; 2014 Jan; 79(1):365-78. PubMed ID: 24328074
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reductive cross-coupling of 3-bromo-2,1-borazaronaphthalenes with alkyl iodides.
    Molander GA; Wisniewski SR; Traister KM
    Org Lett; 2014 Jul; 16(14):3692-5. PubMed ID: 24977641
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Method for Accessing Nitrogen-Containing, B-Heteroaryl-Substituted 2,1-Borazaronaphthalenes.
    Davies GH; Zhou ZZ; Jouffroy M; Molander GA
    J Org Chem; 2017 Jan; 82(1):549-555. PubMed ID: 27966969
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Accessing Elaborated 2,1-Borazaronaphthalene Cores Using Photoredox/Nickel Dual-Catalytic Functionalization.
    Jouffroy M; Davies GH; Molander GA
    Org Lett; 2016 Apr; 18(7):1606-9. PubMed ID: 26986819
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Iridium-catalyzed C-H activation versus directed ortho metalation: complementary borylation of aromatics and heteroaromatics.
    Hurst TE; Macklin TK; Becker M; Hartmann E; Kügel W; Parisienne-La Salle JC; Batsanov AS; Marder TB; Snieckus V
    Chemistry; 2010 Jul; 16(27):8155-61. PubMed ID: 20533457
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Highly regioselective synthesis of aryl chalcogenides through C-H functionalization of arenes.
    Cheng JH; Yi CL; Liu TJ; Lee CF
    Chem Commun (Camb); 2012 Aug; 48(67):8440-2. PubMed ID: 22797474
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Gold(I)-catalyzed regioselective inter-/intramolecular addition cascade of di- and triynes for direct construction of substituted naphthalenes.
    Naoe S; Suzuki Y; Hirano K; Inaba Y; Oishi S; Fujii N; Ohno H
    J Org Chem; 2012 Jun; 77(11):4907-16. PubMed ID: 22568806
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Iridium-catalyzed C-H borylation-based synthesis of natural indolequinones.
    Wang C; Sperry J
    J Org Chem; 2012 Mar; 77(6):2584-7. PubMed ID: 22384836
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Asymmetric ring-opening of oxabenzonorbornadiene with amines promoted by a chiral iridium-monophosphine catalyst.
    Luo R; Liao J; Xie L; Tang W; Chan AS
    Chem Commun (Camb); 2013 Nov; 49(85):9959-61. PubMed ID: 24037423
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Negishi Cross-Coupling Is Compatible with a Reactive B-Cl Bond: Development of a Versatile Late-Stage Functionalization of 1,2-Azaborines and Its Application to the Synthesis of New BN Isosteres of Naphthalene and Indenyl.
    Brown AN; Li B; Liu SY
    J Am Chem Soc; 2015 Jul; 137(28):8932-5. PubMed ID: 26148959
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Iridium-catalyzed, silyl-directed borylation of nitrogen-containing heterocycles.
    Robbins DW; Boebel TA; Hartwig JF
    J Am Chem Soc; 2010 Mar; 132(12):4068-9. PubMed ID: 20199022
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rhodium-catalyzed oxidative coupling of triarylmethanols with internal alkynes via successive C-H and C-C bond cleavages.
    Uto T; Shimizu M; Ueura K; Tsurugi H; Satoh T; Miura M
    J Org Chem; 2008 Jan; 73(1):298-300. PubMed ID: 18052297
    [TBL] [Abstract][Full Text] [Related]  

  • 20. N-Substituted hydroxylamines as synthetically versatile amino sources in the iridium-catalyzed mild C-H amidation reaction.
    Patel P; Chang S
    Org Lett; 2014 Jun; 16(12):3328-31. PubMed ID: 24901257
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.