These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

89 related articles for article (PubMed ID: 28714855)

  • 1. Fabrication of an ideal nanoring from a black phosphorus nanoribbon upon movable bundling carbon nanotubes.
    Cai K; Shi J; Liu L; Qin QH
    Nanotechnology; 2017 Sep; 28(38):385603. PubMed ID: 28714855
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Thermal expansion producing easier formation of a black phosphorus nanotube from nanoribbon on carbon nanotube.
    Cao J; Cai K
    Nanotechnology; 2018 Feb; 29(5):055603. PubMed ID: 29219842
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Self-assembly of a parallelogram black phosphorus ribbon into a nanotube.
    Shi J; Cai K; Liu LN; Qin QH
    Sci Rep; 2017 Oct; 7(1):12951. PubMed ID: 29021542
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Initial Relative Position Influencing Self-Assembly of a Black Phosphorus Ribbon on a CNT.
    Cao J; Wang Y; Shi J; Chai J; Cai K
    Int J Mol Sci; 2018 Dec; 19(12):. PubMed ID: 30562978
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Self-assembly of a nanotube from a black phosphorus nanoribbon on a string of fullerenes at low temperature.
    Cai K; Shi J; Liu LN; Qin QH
    Phys Chem Chem Phys; 2017 Sep; 19(35):24009-24017. PubMed ID: 28832039
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Flexible high-conductivity carbon-nanotube interconnects made by rolling and printing.
    Tawfick S; O'Brien K; Hart AJ
    Small; 2009 Nov; 5(21):2467-73. PubMed ID: 19685444
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Unique Tube-Ring Interactions: Complexation of Single-Walled Carbon Nanotubes with Cycloparaphenyleneacetylenes.
    Miki K; Saiki K; Umeyama T; Baek J; Noda T; Imahori H; Sato Y; Suenaga K; Ohe K
    Small; 2018 Jun; 14(26):e1800720. PubMed ID: 29782702
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Two-dimensional black phosphorus: its fabrication, functionalization and applications.
    Hu Z; Niu T; Guo R; Zhang J; Lai M; He J; Wang L; Chen W
    Nanoscale; 2018 Nov; 10(46):21575-21603. PubMed ID: 30457619
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Facile Synthesis of Black Phosphorus: an Efficient Electrocatalyst for the Oxygen Evolving Reaction.
    Jiang Q; Xu L; Chen N; Zhang H; Dai L; Wang S
    Angew Chem Int Ed Engl; 2016 Oct; 55(44):13849-13853. PubMed ID: 27682470
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In situ hybridization of carbon nanotubes with bacterial cellulose for three-dimensional hybrid bioscaffolds.
    Park S; Park J; Jo I; Cho SP; Sung D; Ryu S; Park M; Min KA; Kim J; Hong S; Hong BH; Kim BS
    Biomaterials; 2015 Jul; 58():93-102. PubMed ID: 25941786
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Polymer Composite Containing Carbon Nanotubes and their Applications.
    Park SH; Bae J
    Recent Pat Nanotechnol; 2017 Jul; 11(2):109-115. PubMed ID: 27978788
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Self-assembly for preparing nanotubes from monolayer graphyne ribbons on a carbon nanotube.
    Song B; Cai K; Shi J; Qin QH
    Nanotechnology; 2022 Nov; 34(4):. PubMed ID: 36301676
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Statistical length measurement method by direct imaging of carbon nanotubes.
    Bengio EA; Tsentalovich DE; Behabtu N; Kleinerman O; Kesselman E; Schmidt J; Talmon Y; Pasquali M
    ACS Appl Mater Interfaces; 2014 May; 6(9):6139-46. PubMed ID: 24773046
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Exposure and emission measurements during production, purification, and functionalization of arc-discharge-produced multi-walled carbon nanotubes.
    Hedmer M; Isaxon C; Nilsson PT; Ludvigsson L; Messing ME; Genberg J; Skaug V; Bohgard M; Tinnerberg H; Pagels JH
    Ann Occup Hyg; 2014 Apr; 58(3):355-79. PubMed ID: 24389082
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electrochemistry at carbon nanotubes: perspective and issues.
    Dumitrescu I; Unwin PR; Macpherson JV
    Chem Commun (Camb); 2009 Dec; (45):6886-901. PubMed ID: 19904345
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Deterministic fabrication of carbon nanotube probes using the dielectrophoretic assembly and electrical detection.
    Lim D; Kwon S; Lee J; Shim HC; Lee HW; Kim S
    Rev Sci Instrum; 2009 Oct; 80(10):105103. PubMed ID: 19895087
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Real-Time Imaging of Self-Organization and Mechanical Competition in Carbon Nanotube Forest Growth.
    Balakrishnan V; Bedewy M; Meshot ER; Pattinson SW; Polsen ES; Laye F; Zakharov DN; Stach EA; Hart AJ
    ACS Nano; 2016 Dec; 10(12):11496-11504. PubMed ID: 27959511
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Colloidal stability of suspended and agglomerate structures of settled carbon nanotubes in different aqueous matrices.
    Schwyzer I; Kaegi R; Sigg L; Nowack B
    Water Res; 2013 Aug; 47(12):3910-20. PubMed ID: 23582307
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Carbon nanotube-nucleobase hybrids: nanorings from uracil-modified single-walled carbon nanotubes.
    Singh P; Toma FM; Kumar J; Venkatesh V; Raya J; Prato M; Verma S; Bianco A
    Chemistry; 2011 Jun; 17(24):6772-80. PubMed ID: 21542041
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The structure, stability, and electronic properties of ultra-thin BC2N nanotubes: a first-principles study.
    Wang Y; Zhang J; Huang G; Yao X; Shao Q
    J Mol Model; 2014 Dec; 20(12):2536. PubMed ID: 25451142
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.