BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

255 related articles for article (PubMed ID: 28715126)

  • 1. An engineered photoswitchable mammalian pyruvate kinase.
    Gehrig S; Macpherson JA; Driscoll PC; Symon A; Martin SR; MacRae JI; Kleinjung J; Fraternali F; Anastasiou D
    FEBS J; 2017 Sep; 284(18):2955-2980. PubMed ID: 28715126
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structural insight into mechanisms for dynamic regulation of PKM2.
    Wang P; Sun C; Zhu T; Xu Y
    Protein Cell; 2015 Apr; 6(4):275-287. PubMed ID: 25645022
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Functional cross-talk between allosteric effects of activating and inhibiting ligands underlies PKM2 regulation.
    Macpherson JA; Theisen A; Masino L; Fets L; Driscoll PC; Encheva V; Snijders AP; Martin SR; Kleinjung J; Barran PE; Fraternali F; Anastasiou D
    Elife; 2019 Jul; 8():. PubMed ID: 31264961
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structural Investigation of a Dimeric Variant of Pyruvate Kinase Muscle Isoform 2.
    Srivastava D; Razzaghi M; Henzl MT; Dey M
    Biochemistry; 2017 Dec; 56(50):6517-6520. PubMed ID: 29182273
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biochemical and structural insights into how amino acids regulate pyruvate kinase muscle isoform 2.
    Nandi S; Dey M
    J Biol Chem; 2020 Apr; 295(16):5390-5403. PubMed ID: 32144209
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cancer-associated mutations in human pyruvate kinase M2 impair enzyme activity.
    Liu VM; Howell AJ; Hosios AM; Li Z; Israelsen WJ; Vander Heiden MG
    FEBS Lett; 2020 Feb; 594(4):646-664. PubMed ID: 31642061
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanistic and Structural Insights into Cysteine-Mediated Inhibition of Pyruvate Kinase Muscle Isoform 2.
    Srivastava D; Nandi S; Dey M
    Biochemistry; 2019 Sep; 58(35):3669-3682. PubMed ID: 31386812
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structurally distributed surface sites tune allosteric regulation.
    McCormick JW; Russo MA; Thompson S; Blevins A; Reynolds KA
    Elife; 2021 Jun; 10():. PubMed ID: 34132193
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Glycolytic reprogramming in cancer cells: PKM2 dimer predominance induced by pulsatile PFK-1 activity.
    Shi X; You L; Luo RY
    Phys Biol; 2019 Sep; 16(6):066007. PubMed ID: 31469100
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structural basis for tumor pyruvate kinase M2 allosteric regulation and catalysis.
    Dombrauckas JD; Santarsiero BD; Mesecar AD
    Biochemistry; 2005 Jul; 44(27):9417-29. PubMed ID: 15996096
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pyruvate kinase M knockdown-induced signaling via AMP-activated protein kinase promotes mitochondrial biogenesis, autophagy, and cancer cell survival.
    Prakasam G; Singh RK; Iqbal MA; Saini SK; Tiku AB; Bamezai RNK
    J Biol Chem; 2017 Sep; 292(37):15561-15576. PubMed ID: 28778925
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structural basis of PKM2 regulation.
    Yang W
    Protein Cell; 2015 Apr; 6(4):238-40. PubMed ID: 25773278
    [No Abstract]   [Full Text] [Related]  

  • 13. Mutations in the PKM2 exon-10 region are associated with reduced allostery and increased nuclear translocation.
    Chen TJ; Wang HJ; Liu JS; Cheng HH; Hsu SC; Wu MC; Lu CH; Wu YF; Wu JW; Liu YY; Kung HJ; Wang WC
    Commun Biol; 2019; 2():105. PubMed ID: 30911680
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Allosteric regulation alters carrier domain translocation in pyruvate carboxylase.
    Liu Y; Budelier MM; Stine K; St Maurice M
    Nat Commun; 2018 Apr; 9(1):1384. PubMed ID: 29643369
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The cysteine residue at 424th of pyruvate kinase M2 is crucial for tetramerization and responsiveness to oxidative stress.
    Masaki S; Hashimoto K; Kihara D; Tsuzuki C; Kataoka N; Suzuki K
    Biochem Biophys Res Commun; 2020 Jun; 526(4):973-977. PubMed ID: 32295714
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Secondary-structure switch regulates the substrate binding of a YopJ family acetyltransferase.
    Xia Y; Zou R; Escouboué M; Zhong L; Zhu C; Pouzet C; Wu X; Wang Y; Lv G; Zhou H; Sun P; Ding K; Deslandes L; Yuan S; Zhang ZM
    Nat Commun; 2021 Oct; 12(1):5969. PubMed ID: 34645811
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mitogenic and oncogenic stimulation of K433 acetylation promotes PKM2 protein kinase activity and nuclear localization.
    Lv L; Xu YP; Zhao D; Li FL; Wang W; Sasaki N; Jiang Y; Zhou X; Li TT; Guan KL; Lei QY; Xiong Y
    Mol Cell; 2013 Nov; 52(3):340-52. PubMed ID: 24120661
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Coiled-coil dimerization of the LOV2 domain of the blue-light photoreceptor phototropin 1 from Arabidopsis thaliana.
    Halavaty AS; Moffat K
    Acta Crystallogr Sect F Struct Biol Cryst Commun; 2013 Dec; 69(Pt 12):1316-21. PubMed ID: 24316821
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An engineered N-acyltransferase-LOV2 domain fusion protein enables light-inducible allosteric control of enzymatic activity.
    Reynolds JA; Vishweshwaraiah YL; Chirasani VR; Pritchard JR; Dokholyan NV
    J Biol Chem; 2023 Apr; 299(4):103069. PubMed ID: 36841477
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The structural and functional characterization of Malus domestica double bond reductase MdDBR provides insights towards the identification of its substrates.
    Caliandro R; Polsinelli I; Demitri N; Musiani F; Martens S; Benini S
    Int J Biol Macromol; 2021 Feb; 171():89-99. PubMed ID: 33412202
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.