These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

225 related articles for article (PubMed ID: 28715171)

  • 21. Frictional transition from superlubric islands to pinned monolayers.
    Pierno M; Bruschi L; Mistura G; Paolicelli G; di Bona A; Valeri S; Guerra R; Vanossi A; Tosatti E
    Nat Nanotechnol; 2015 Aug; 10(8):714-8. PubMed ID: 26006001
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Manipulation and Characterization of Submillimeter Shearing Contacts in Graphite by the Micro-Dome Technique.
    Yang D; Qu C; Gongyang Y; Zheng Q
    ACS Appl Mater Interfaces; 2023 Sep; 15(37):44563-44571. PubMed ID: 37672630
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Mechanisms of friction reduction of nanoscale sliding contacts achieved through ultrasonic excitation.
    Jiryaei Sharahi H; Egberts P; Kim S
    Nanotechnology; 2019 Feb; 30(7):075502. PubMed ID: 30523838
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Solidification and superlubricity with molecular alkane films.
    Smith AM; Hallett JE; Perkin S
    Proc Natl Acad Sci U S A; 2019 Dec; 116(51):25418-25423. PubMed ID: 31801880
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Computational Prediction of Superlubric Layered Heterojunctions.
    Gao E; Wu B; Wang Y; Jia X; Ouyang W; Liu Z
    ACS Appl Mater Interfaces; 2021 Jul; 13(28):33600-33608. PubMed ID: 34213300
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Tunable macroscale structural superlubricity in two-layer graphene via strain engineering.
    Androulidakis C; Koukaras EN; Paterakis G; Trakakis G; Galiotis C
    Nat Commun; 2020 Mar; 11(1):1595. PubMed ID: 32221301
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Observation of microscale superlubricity in graphite.
    Liu Z; Yang J; Grey F; Liu JZ; Liu Y; Wang Y; Yang Y; Cheng Y; Zheng Q
    Phys Rev Lett; 2012 May; 108(20):205503. PubMed ID: 23003154
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Superlubricity between MoS
    Li H; Wang J; Gao S; Chen Q; Peng L; Liu K; Wei X
    Adv Mater; 2017 Jul; 29(27):. PubMed ID: 28497859
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Tuning friction to a superlubric state via in-plane straining.
    Zhang S; Hou Y; Li S; Liu L; Zhang Z; Feng XQ; Li Q
    Proc Natl Acad Sci U S A; 2019 Dec; 116(49):24452-24456. PubMed ID: 31659028
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Toward Robust Macroscale Superlubricity on Engineering Steel Substrate.
    Li P; Ju P; Ji L; Li H; Liu X; Chen L; Zhou H; Chen J
    Adv Mater; 2020 Sep; 32(36):e2002039. PubMed ID: 32715515
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Moiré-Tile Manipulation-Induced Friction Switch of Graphene on a Platinum Surface.
    Liu Z; Vilhena JG; Hinaut A; Scherb S; Luo F; Zhang J; Glatzel T; Gnecco E; Meyer E
    Nano Lett; 2023 May; 23(10):4693-4697. PubMed ID: 36917620
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Role of surface roughness in superlubricity.
    Tartaglino U; Samoilov VN; Persson BN
    J Phys Condens Matter; 2006 May; 18(17):4143-60. PubMed ID: 21690770
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Tribo-Induced Interfacial Material Transfer of an Atomic Force Microscopy Probe Assisting Superlubricity in a WS
    Tian J; Yin X; Li J; Qi W; Huang P; Chen X; Luo J
    ACS Appl Mater Interfaces; 2020 Jan; 12(3):4031-4040. PubMed ID: 31889443
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Structural Superlubricity Based on Crystalline Materials.
    Song Y; Qu C; Ma M; Zheng Q
    Small; 2020 Apr; 16(15):e1903018. PubMed ID: 31670482
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Friction. Macroscale superlubricity enabled by graphene nanoscroll formation.
    Berman D; Deshmukh SA; Sankaranarayanan SK; Erdemir A; Sumant AV
    Science; 2015 Jun; 348(6239):1118-22. PubMed ID: 25977372
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Atomistic Mechanism of Friction-Force Independence on the Normal Load and Other Friction Laws for Dynamic Structural Superlubricity.
    Brilliantov NV; Tsukanov AA; Grebenko AK; Nasibulin AG; Ostanin IA
    Phys Rev Lett; 2023 Dec; 131(26):266201. PubMed ID: 38215361
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Superlow Friction of Graphite Induced by the Self-Assembly of Sodium Dodecyl Sulfate Molecular Layers.
    Li J; Luo J
    Langmuir; 2017 Nov; 33(44):12596-12601. PubMed ID: 29037037
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Attraction induced frictionless sliding of rare gas monolayer on metallic surfaces: an efficient strategy for superlubricity.
    Sun J; Zhang Y; Lu Z; Xue Q; Wang L
    Phys Chem Chem Phys; 2017 May; 19(18):11026-11031. PubMed ID: 28397884
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Molecular Origin of Superlubricity between Graphene and a Highly Hydrophobic Surface in Water.
    Li J; Cao W; Li J; Ma M; Luo J
    J Phys Chem Lett; 2019 Jun; 10(11):2978-2984. PubMed ID: 31094522
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The breakdown of superlubricity by driving-induced commensurate dislocations.
    Benassi A; Ma M; Urbakh M; Vanossi A
    Sci Rep; 2015 Nov; 5():16134. PubMed ID: 26553308
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.