These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 28715178)

  • 61. Springtail-inspired omniphobic slippery membrane with nano-concave re-entrant structures for membrane distillation.
    Guo J; Jiang M; Li X; Farid MU; Deka BJ; Zhang B; Sun J; Wang Z; Yi C; Wong PW; Jeong S; Gu B; An AK
    Nat Commun; 2024 Sep; 15(1):7750. PubMed ID: 39237575
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Superomniphobic, transparent, and antireflection surfaces based on hierarchical nanostructures.
    Mazumder P; Jiang Y; Baker D; Carrilero A; Tulli D; Infante D; Hunt AT; Pruneri V
    Nano Lett; 2014 Aug; 14(8):4677-81. PubMed ID: 24988148
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Water-Responsive Self-Repairing Superomniphobic Surfaces via Regeneration of Hierarchical Topography.
    Ezazi M; Shrestha B; Maharjan A; Kwon G
    ACS Mater Au; 2022 Jan; 2(1):55-62. PubMed ID: 36855698
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Dynamic azopolymeric interfaces for photoactive cell instruction.
    De Martino S; Netti PA
    Biophys Rev (Melville); 2020 Dec; 1(1):011302. PubMed ID: 38505629
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Dual Superlyophobic Aliphatic Polyketone Membranes for Highly Efficient Emulsified Oil-Water Separation: Performance and Mechanism.
    Cheng L; Wang DM; Shaikh AR; Fang LF; Jeon S; Saeki D; Zhang L; Liu CJ; Matsuyama H
    ACS Appl Mater Interfaces; 2018 Sep; 10(36):30860-30870. PubMed ID: 30111092
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Strategy toward fluorinated polyhedral oligomeric silsesquioxane wrapping nanoparticles for superomniphobic surfaces.
    Chen B; Yang M; Lin X; Liu W; Yuan H; Liao J
    Chem Commun (Camb); 2022 Mar; 58(26):4263-4266. PubMed ID: 35289826
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Tuning omniphobicity via morphological control of metal-organic framework functionalized surfaces.
    Tan TT; Reithofer MR; Chen EY; Menon AG; Hor TS; Xu J; Chin JM
    J Am Chem Soc; 2013 Nov; 135(44):16272-5. PubMed ID: 24138401
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Superomniphobic Surfaces with Improved Mechanical Durability: Synergy of Hierarchical Texture and Mechanical Interlocking.
    Wang W; Vahabi H; Movafaghi S; Kota AK
    Adv Mater Interfaces; 2019 Sep; 6(18):. PubMed ID: 33042731
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Fabrication techniques for bioinspired, mechanically-durable, superliquiphobic surfaces for water, oil, and surfactant repellency.
    Martin S; Brown PS; Bhushan B
    Adv Colloid Interface Sci; 2017 Mar; 241():1-23. PubMed ID: 28143675
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Simple and Reliable Fabrication of Bioinspired Mushroom-Shaped Micropillars with Precisely Controlled Tip Geometries.
    Yi H; Kang M; Kwak MK; Jeong HE
    ACS Appl Mater Interfaces; 2016 Aug; 8(34):22671-8. PubMed ID: 27548917
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Quantitative Study of Morphological Features of Stem Cells onto Photopatterned Azopolymer Films.
    Salvatore M; Oscurato SL; D'Albore M; Guarino V; Zeppetelli S; Maddalena P; Ambrosio A; Ambrosio L
    J Funct Biomater; 2020 Feb; 11(1):. PubMed ID: 32075063
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Quantitative testing of robustness on superomniphobic surfaces by drop impact.
    Nguyen TP; Brunet P; Coffinier Y; Boukherroub R
    Langmuir; 2010 Dec; 26(23):18369-73. PubMed ID: 21028759
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Light-Driven Reversible Shaping of Individual Azopolymeric Micro-Pillars.
    Pirani F; Angelini A; Frascella F; Rizzo R; Ricciardi S; Descrovi E
    Sci Rep; 2016 Aug; 6():31702. PubMed ID: 27531219
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Programmable Liquid Adhesion on Bio-Inspired Re-Entrant Structures.
    Liu X; Gu H; Ding H; Du X; He Z; Sun L; Liao J; Xiao P; Gu Z
    Small; 2019 Aug; 15(35):e1902360. PubMed ID: 31305010
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Microfabrication of re-entrant surface with hydrophobicity/oleophobicity for liquid foods.
    Yamaguchi M
    Sci Rep; 2020 Feb; 10(1):2250. PubMed ID: 32042014
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Multi-level micro/nanotexturing by three-dimensionally controlled photofluidization and its use in plasmonic applications.
    Kang HS; Lee S; Lee SA; Park JK
    Adv Mater; 2013 Oct; 25(38):5490-7. PubMed ID: 23857634
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Removal of Particulate Contamination from Solid Surfaces Using Polymeric Micropillars.
    Izadi H; Dogra N; Perreault F; Schwarz C; Simon S; Vanderlick TK
    ACS Appl Mater Interfaces; 2016 Jul; 8(26):16967-78. PubMed ID: 27101206
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Facile one-step photolithographic method for engineering hierarchically nano/microstructured transparent superamphiphobic surfaces.
    Li T; Paliy M; Wang X; Kobe B; Lau WM; Yang J
    ACS Appl Mater Interfaces; 2015 May; 7(20):10988-92. PubMed ID: 25942618
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Mechanically robust superhydrophobic polymer surfaces based on protective micropillars.
    Huovinen E; Takkunen L; Korpela T; Suvanto M; Pakkanen TT; Pakkanen TA
    Langmuir; 2014 Feb; 30(5):1435-43. PubMed ID: 24483340
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Fabrication of the funnel-shaped three-dimensional plasmonic tip arrays by directional photofluidization lithography.
    Lee S; Shin J; Lee YH; Park JK
    ACS Nano; 2010 Dec; 4(12):7175-84. PubMed ID: 21090674
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.