These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
99 related articles for article (PubMed ID: 28715225)
1. Structure, Ionic Conductivity, and Dielectric Properties of Li-Rich Garnet-type Li Abdel-Basset DM; Mulmi S; El-Bana MS; Fouad SS; Thangadurai V Inorg Chem; 2017 Aug; 56(15):8865-8877. PubMed ID: 28715225 [TBL] [Abstract][Full Text] [Related]
2. Dopant Concentration-Porosity-Li-Ion Conductivity Relationship in Garnet-Type Li5+2xLa3Ta2-xYxO12 (0.05 ≤ x ≤ 0.75) and Their Stability in Water and 1 M LiCl. Narayanan S; Ramezanipour F; Thangadurai V Inorg Chem; 2015 Jul; 54(14):6968-77. PubMed ID: 26126172 [TBL] [Abstract][Full Text] [Related]
3. Synthesis and characterization of novel Li-stuffed garnet-like Li Abdel Basset DM; Mulmi S; El-Bana MS; Fouad SS; Thangadurai V Dalton Trans; 2017 Jan; 46(3):933-946. PubMed ID: 28009888 [TBL] [Abstract][Full Text] [Related]
4. Dielectric characteristics of fast Li ion conducting garnet-type Li5+2xLa3Nb2-xYxO12 (x = 0.25, 0.5 and 0.75). Narayanan S; Baral AK; Thangadurai V Phys Chem Chem Phys; 2016 Jun; 18(22):15418-26. PubMed ID: 27215796 [TBL] [Abstract][Full Text] [Related]
5. Effect of simultaneous substitution of Y and Ta on the stabilization of cubic phase, microstructure, and Li(+) conductivity of Li7La3Zr2O12 lithium garnet. Dhivya L; Murugan R ACS Appl Mater Interfaces; 2014 Oct; 6(20):17606-15. PubMed ID: 25265573 [TBL] [Abstract][Full Text] [Related]
6. Evaluation of fundamental transport properties of Li-excess garnet-type Li(5+2x)La(3)Ta(2-x)Y(x)O(12) (x = 0.25, 0.5 and 0.75) electrolytes using AC impedance and dielectric spectroscopy. Baral AK; Narayanan S; Ramezanipour F; Thangadurai V Phys Chem Chem Phys; 2014 Jun; 16(23):11356-65. PubMed ID: 24788799 [TBL] [Abstract][Full Text] [Related]
7. Tailor-made development of fast Li ion conducting garnet-like solid electrolytes. Ramzy A; Thangadurai V ACS Appl Mater Interfaces; 2010 Feb; 2(2):385-90. PubMed ID: 20356183 [TBL] [Abstract][Full Text] [Related]
8. Fast Solid-State Li Ion Conducting Garnet-Type Structure Metal Oxides for Energy Storage. Thangadurai V; Pinzaru D; Narayanan S; Baral AK J Phys Chem Lett; 2015 Jan; 6(2):292-9. PubMed ID: 26263465 [TBL] [Abstract][Full Text] [Related]
9. Highly conductive Li garnets by a multielement doping strategy. Tong X; Thangadurai V; Wachsman ED Inorg Chem; 2015 Apr; 54(7):3600-7. PubMed ID: 25791155 [TBL] [Abstract][Full Text] [Related]
10. Origin of the enhanced Li(+) ionic conductivity in Gd(+3) substituted Li5+2xLa3Nb2-xGdxO12 lithium conducting garnets. Ahmad MM; Al-Quaimi MM Phys Chem Chem Phys; 2015 Jun; 17(24):16007-14. PubMed ID: 26028334 [TBL] [Abstract][Full Text] [Related]
11. Garnet-type solid-state fast Li ion conductors for Li batteries: critical review. Thangadurai V; Narayanan S; Pinzaru D Chem Soc Rev; 2014 Jul; 43(13):4714-27. PubMed ID: 24681593 [TBL] [Abstract][Full Text] [Related]
12. Submicron-Sized Nb-Doped Lithium Garnet for High Ionic Conductivity Solid Electrolyte and Performance of Quasi-Solid-State Lithium Battery. Ji Y; Zhou C; Lin F; Li B; Yang F; Zhu H; Duan J; Chen Z Materials (Basel); 2020 Jan; 13(3):. PubMed ID: 31991551 [TBL] [Abstract][Full Text] [Related]
13. Structure and Li+ dynamics of Sb-doped Li7La3Zr2O12 fast lithium ion conductors. Ramakumar S; Satyanarayana L; Manorama SV; Murugan R Phys Chem Chem Phys; 2013 Jul; 15(27):11327-38. PubMed ID: 23732926 [TBL] [Abstract][Full Text] [Related]
14. Correction: Synthesis and characterization of novel Li-stuffed garnet-like Li Abdel Basset DM; Mulmi S; El-Bana MS; Fouad SS; Thangadurai V Dalton Trans; 2017 Jun; 46(25):8304-8305. PubMed ID: 28653716 [TBL] [Abstract][Full Text] [Related]
15. Evaluation of the effect of site substitution of Pr doping in the lithium garnet system Li Stockham MP; Dong B; Ding Y; Li Y; Slater PR Dalton Trans; 2020 Aug; 49(30):10349-10359. PubMed ID: 32510536 [TBL] [Abstract][Full Text] [Related]
16. Dual-Doped Cubic Garnet Solid Electrolytes with Superior Air Stability. Abrha LH; Hagos TT; Nikodimos Y; Bezabh HK; Berhe GB; Hagos TM; Huang CJ; Tegegne WA; Jiang SK; Weldeyohannes HH; Wu SH; Su WN; Hwang BJ ACS Appl Mater Interfaces; 2020 Jun; 12(23):25709-25717. PubMed ID: 32407073 [TBL] [Abstract][Full Text] [Related]
17. Structural limitations for optimizing garnet-type solid electrolytes: a perspective. Zeier WG Dalton Trans; 2014 Nov; 43(43):16133-8. PubMed ID: 25277079 [TBL] [Abstract][Full Text] [Related]
18. Enhancing Moisture and Electrochemical Stability of the Li Peng L; Chen S; Yu C; Wei C; Liao C; Wu Z; Wang HL; Cheng S; Xie J ACS Appl Mater Interfaces; 2022 Jan; 14(3):4179-4185. PubMed ID: 35038866 [TBL] [Abstract][Full Text] [Related]
19. X-ray pair distribution function analysis and electrical and electrochemical properties of cerium doped Li Dong B; Stockham MP; Chater PA; Slater PR Dalton Trans; 2020 Aug; 49(33):11727-11735. PubMed ID: 32797132 [TBL] [Abstract][Full Text] [Related]
20. Crystal chemistry and stability of "Li7La3Zr2O12" garnet: a fast lithium-ion conductor. Geiger CA; Alekseev E; Lazic B; Fisch M; Armbruster T; Langner R; Fechtelkord M; Kim N; Pettke T; Weppner W Inorg Chem; 2011 Feb; 50(3):1089-97. PubMed ID: 21188978 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]