These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 28715322)

  • 1. Optimal Mixed Tracking/Impedance Control With Application to Transfemoral Prostheses With Energy Regeneration.
    Khademi G; Mohammadi H; Richter H; Simon D
    IEEE Trans Biomed Eng; 2018 Apr; 65(4):894-910. PubMed ID: 28715322
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Early evaluation of a powered transfemoral prosthesis with force-modulated impedance control and energy regeneration.
    Warner H; Khalaf P; Richter H; Simon D; Hardin E; van den Bogert AJ
    Med Eng Phys; 2022 Feb; 100():103744. PubMed ID: 35144731
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optimal design and control of an electromechanical transfemoral prosthesis with energy regeneration.
    Rohani F; Richter H; van den Bogert AJ
    PLoS One; 2017; 12(11):e0188266. PubMed ID: 29149213
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Gradient-Based Multi-Objective Feature Selection for Gait Mode Recognition of Transfemoral Amputees.
    Khademi G; Mohammadi H; Simon D
    Sensors (Basel); 2019 Jan; 19(2):. PubMed ID: 30634668
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Adaptive control of powered transfemoral prostheses based on adaptive dynamic programming.
    Yue Wen ; Ming Liu ; Si J; He Huang
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():5071-5074. PubMed ID: 28269408
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modeling and optimal control of an energy-storing prosthetic knee.
    van den Bogert AJ; Samorezov S; Davis BL; Smith WA
    J Biomech Eng; 2012 May; 134(5):051007. PubMed ID: 22757495
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Virtual prototyping of a semi-active transfemoral prosthetic leg.
    Lui ZW; Awad MI; Abouhossein A; Dehghani-Sanij AA; Messenger N
    Proc Inst Mech Eng H; 2015 May; 229(5):350-61. PubMed ID: 25991714
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Model-free robust adaptive integral sliding mode impedance control of knee-ankle-toe active transfemoral prosthesis.
    Wu Z; Chen Y; Geng Y; Wang X; Xuan B
    Int J Med Robot; 2022 Jun; 18(3):e2378. PubMed ID: 35133713
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Running with a powered knee and ankle prosthesis.
    Shultz AH; Lawson BE; Goldfarb M
    IEEE Trans Neural Syst Rehabil Eng; 2015 May; 23(3):403-12. PubMed ID: 25020138
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Comparison of Control Strategies in Commercial and Research Knee Prostheses.
    Fluit R; Prinsen EC; Wang S; van der Kooij H
    IEEE Trans Biomed Eng; 2020 Jan; 67(1):277-290. PubMed ID: 31021749
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A transcutaneous energy transmission system for artificial heart adapting to changing impedance.
    Fu Y; Hu L; Ruan X; Fu X
    Artif Organs; 2015 Apr; 39(4):378-87. PubMed ID: 25349072
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Novel compliant actuator for wearable robotics applications.
    Claros M; Soto R; Rodríguez JJ; Cantú C; Contreras-Vidal JL
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():2854-7. PubMed ID: 24110322
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Design of an expert system to automatically calibrate impedance control for powered knee prostheses.
    Wang D; Liu M; Zhang F; Huang H
    IEEE Int Conf Rehabil Robot; 2013 Jun; 2013():6650442. PubMed ID: 24187260
    [TBL] [Abstract][Full Text] [Related]  

  • 14. User-modulated impedance control of a prosthetic elbow in unconstrained, perturbed motion.
    Sensinger JW; ff Weir RF
    IEEE Trans Biomed Eng; 2008 Mar; 55(3):1043-55. PubMed ID: 18334396
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ankle-Knee prosthesis with powered ankle and energy transfer for CYBERLEGs α-prototype.
    Geeroms J; Flynn L; Jimenez-Fabian R; Vanderborght B; Lefeber D
    IEEE Int Conf Rehabil Robot; 2013 Jun; 2013():6650352. PubMed ID: 24187171
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Design of an energy efficient transfemoral prosthesis using lockable parallel springs and electrical energy transfer.
    Heremans F; Ronsse R
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():1305-1312. PubMed ID: 28814001
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cobotic architecture for prosthetics.
    Faulring EL; Colgate JE; Peshkin MA
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():5635-7. PubMed ID: 17947157
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Active plantar-flexion above-knee prosthesis: concept and preliminary design.
    Rigas C
    Prosthet Orthot Int; 1985 Dec; 9(3):141-4. PubMed ID: 4088842
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Control and Evaluation of a Powered Transfemoral Prosthesis for Stair Ascent.
    Ledoux ED; Goldfarb M
    IEEE Trans Neural Syst Rehabil Eng; 2017 Jul; 25(7):917-924. PubMed ID: 28113346
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Design and Control of a New Biomimetic Transfemoral Knee Prosthesis Using an Echo-Control Scheme.
    Bernal-Torres MG; Medellín-Castillo HI; Arellano-González JC
    J Healthc Eng; 2018; 2018():8783642. PubMed ID: 29854368
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.