These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 28715331)

  • 1. The Importance of Haptics in Generating Exoskeleton Gait Trajectory Using Alternate Motor Inputs.
    Karunakaran KK; Abbruzzese KM; Xu H; Foulds RA
    IEEE Trans Neural Syst Rehabil Eng; 2017 Dec; 25(12):2328-2335. PubMed ID: 28715331
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Haptic proprioception in a virtual locomotor task.
    Karunakaran K; Abbruzzese K; Xu H; Ehrenberg N; Foulds R
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():3594-7. PubMed ID: 25570768
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Volition-adaptive control for gait training using wearable exoskeleton: preliminary tests with incomplete spinal cord injury individuals.
    Rajasekaran V; López-Larraz E; Trincado-Alonso F; Aranda J; Montesano L; Del-Ama AJ; Pons JL
    J Neuroeng Rehabil; 2018 Jan; 15(1):4. PubMed ID: 29298691
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparison of visual and haptic feedback during training of lower extremities.
    Koritnik T; Koenig A; Bajd T; Riener R; Munih M
    Gait Posture; 2010 Oct; 32(4):540-6. PubMed ID: 20727763
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Questionnaire results of user experiences with wearable exoskeletons and their preferences for sensory feedback.
    Muijzer-Witteveen H; Sibum N; van Dijsseldonk R; Keijsers N; van Asseldonk E
    J Neuroeng Rehabil; 2018 Nov; 15(1):112. PubMed ID: 30470238
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization of surface electromyography patterns of healthy and incomplete spinal cord injury subjects interacting with an upper-extremity exoskeleton.
    McDonald CG; Dennis TA; O'Malley MK
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():164-169. PubMed ID: 28813812
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Feedback-Error Learning for time-effective gait trajectory tracking in wearable exoskeletons.
    Figueiredo J; Fernandes PN; Moreno JC; Santos CP
    Anat Rec (Hoboken); 2023 Apr; 306(4):728-740. PubMed ID: 35869906
    [TBL] [Abstract][Full Text] [Related]  

  • 8. On the Adaptation of Pelvic Motion by Applying 3-dimensional Guidance Forces Using TPAD.
    Kang J; Vashista V; Agrawal SK
    IEEE Trans Neural Syst Rehabil Eng; 2017 Sep; 25(9):1558-1567. PubMed ID: 28287978
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Obstacle avoidance during locomotion using haptic information in normally sighted humans.
    Patla AE; Davies TC; Niechwiej E
    Exp Brain Res; 2004 Mar; 155(2):173-85. PubMed ID: 14770274
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Toward Multimodal Human-Robot Interaction to Enhance Active Participation of Users in Gait Rehabilitation.
    Gui K; Liu H; Zhang D
    IEEE Trans Neural Syst Rehabil Eng; 2017 Nov; 25(11):2054-2066. PubMed ID: 28504943
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Vibrotactile feedback to control the amount of weight shift during walking - A first step towards better control of an exoskeleton for spinal cord injury subjects.
    Muijzer-Witteveen HJB; Nataletti S; Agnello M; Casadio M; van Asseldonk EHF
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():1482-1487. PubMed ID: 28814029
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Novel User Control for Lower Extremity Rehabilitation Exoskeletons.
    Karunakaran KK; Abbruzzese K; Androwis G; Foulds RA
    Front Robot AI; 2020; 7():108. PubMed ID: 33501275
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Lower-limb exoskeletons for individuals with chronic spinal cord injury: findings from a feasibility study.
    Benson I; Hart K; Tussler D; van Middendorp JJ
    Clin Rehabil; 2016 Jan; 30(1):73-84. PubMed ID: 25761635
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Development and Preliminary Test of a Powered Alternately Walking Exoskeleton With the Wheeled Foot for Paraplegic Patients.
    Ma Q; Ji L; Wang R
    IEEE Trans Neural Syst Rehabil Eng; 2018 Feb; 26(2):451-459. PubMed ID: 29432112
    [TBL] [Abstract][Full Text] [Related]  

  • 15. EEG-Based Detection of Starting and Stopping During Gait Cycle.
    Hortal E; Úbeda A; Iáñez E; Azorín JM; Fernández E
    Int J Neural Syst; 2016 Nov; 26(7):1650029. PubMed ID: 27354191
    [TBL] [Abstract][Full Text] [Related]  

  • 16. PalmEx: Adding Palmar Force-Feedback for 3D Manipulation With Haptic Exoskeleton Gloves.
    Bouzbib E; Teyssier M; Howard T; Pacchierotti C; Lecuyer A
    IEEE Trans Vis Comput Graph; 2024 Jul; 30(7):3973-3980. PubMed ID: 37022896
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Portable haptic device for lower limb amputee gait feedback: Assessing static and dynamic perceptibility.
    Husman MAB; Maqbool HF; Awad MI; Dehghani-Sanij AA
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():1562-1566. PubMed ID: 28814042
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Gait Trajectory and Event Prediction from State Estimation for Exoskeletons During Gait.
    Tanghe K; De Groote F; Lefeber D; De Schutter J; Aertbelien E
    IEEE Trans Neural Syst Rehabil Eng; 2020 Jan; 28(1):211-220. PubMed ID: 31675336
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Increasing patient engagement during virtual reality-based motor rehabilitation.
    Zimmerli L; Jacky M; Lünenburger L; Riener R; Bolliger M
    Arch Phys Med Rehabil; 2013 Sep; 94(9):1737-46. PubMed ID: 23500181
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evaluation of Wearable Haptic Systems for the Fingers in Augmented Reality Applications.
    Maisto M; Pacchierotti C; Chinello F; Salvietti G; De Luca A; Prattichizzo D
    IEEE Trans Haptics; 2017; 10(4):511-522. PubMed ID: 28391207
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.