These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 28715390)

  • 1. Mammalian Cell Encapsulation in Alginate Beads Using a Simple Stirred Vessel.
    Hoesli CA; Kiang RLJ; Raghuram K; Pedroza RG; Markwick KE; Colantuoni AMR; Piret JM
    J Vis Exp; 2017 Jun; (124):. PubMed ID: 28715390
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pancreatic cell immobilization in alginate beads produced by emulsion and internal gelation.
    Hoesli CA; Raghuram K; Kiang RL; Mocinecová D; Hu X; Johnson JD; Lacík I; Kieffer TJ; Piret JM
    Biotechnol Bioeng; 2011 Feb; 108(2):424-34. PubMed ID: 20939004
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Culture of chondrocytes in alginate beads.
    De Ceuninck F; Lesur C; Pastoureau P; Caliez A; Sabatini M
    Methods Mol Med; 2004; 100():15-22. PubMed ID: 15280584
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Oil encapsulation in core-shell alginate capsules by inverse gelation. I: dripping methodology.
    Martins E; Renard D; Adiwijaya Z; Karaoglan E; Poncelet D
    J Microencapsul; 2017 Feb; 34(1):82-90. PubMed ID: 28097931
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of process variables on the encapsulation of oil in ca-alginate capsules using an inverse gelation technique.
    Abang S; Chan ES; Poncelet D
    J Microencapsul; 2012; 29(5):417-28. PubMed ID: 22292966
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development of a microchannel emulsification process for pancreatic beta cell encapsulation.
    Bitar CME; Markwick KE; Treľová D; Kroneková Z; Pelach M; Selerier CMO; Dietrich J; Lacík I; Hoesli CA
    Biotechnol Prog; 2019 Nov; 35(6):e2851. PubMed ID: 31131558
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Size control of calcium alginate beads containing living cells using micro-nozzle array.
    Sugiura S; Oda T; Izumida Y; Aoyagi Y; Satake M; Ochiai A; Ohkohchi N; Nakajima M
    Biomaterials; 2005 Jun; 26(16):3327-31. PubMed ID: 15603828
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synergistic effect of divalent cations in improving technological properties of cross-linked alginate beads.
    Cerciello A; Del Gaudio P; Granata V; Sala M; Aquino RP; Russo P
    Int J Biol Macromol; 2017 Aug; 101():100-106. PubMed ID: 28322959
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Review and current status of emulsion/dispersion technology using an internal gelation process for the design of alginate particles.
    Reis CP; Neufeld RJ; Vilela S; Ribeiro AJ; Veiga F
    J Microencapsul; 2006 May; 23(3):245-57. PubMed ID: 16801237
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tuning structural durability of yeast-encapsulating alginate gel beads with interpenetrating networks for sustained bioethanol production.
    Cha C; Kim SR; Jin YS; Kong H
    Biotechnol Bioeng; 2012 Jan; 109(1):63-73. PubMed ID: 21732329
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Influence of Dopants on the Effectiveness of Alginate Beads in Immobilized Cell Reactors.
    Nordmeier A; Chidambaram D
    Appl Biochem Biotechnol; 2016 Apr; 178(8):1503-9. PubMed ID: 26707587
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Oil core microcapsules by inverse gelation technique.
    Martins E; Renard D; Davy J; Marquis M; Poncelet D
    J Microencapsul; 2015; 32(1):86-95. PubMed ID: 25413437
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Oil encapsulation techniques using alginate as encapsulating agent: applications and drawbacks.
    Martins E; Poncelet D; Rodrigues RC; Renard D
    J Microencapsul; 2017 Dec; 34(8):754-771. PubMed ID: 29161939
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Formulation and stability evaluation of 3D alginate beads potentially useful for cumulus-oocyte complexes culture.
    Dorati R; Genta I; Ferrari M; Vigone G; Merico V; Garagna S; Zuccotti M; Conti B
    J Microencapsul; 2016; 33(2):137-45. PubMed ID: 26791322
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Retention and release of oil-in-water emulsions from filled hydrogel beads composed of calcium alginate: impact of emulsifier type and pH.
    Zeeb B; Saberi AH; Weiss J; McClements DJ
    Soft Matter; 2015 Mar; 11(11):2228-36. PubMed ID: 25646949
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Preparation of calcium alginate nanoparticles using water-in-oil (W/O) nanoemulsions.
    Machado AH; Lundberg D; Ribeiro AJ; Veiga FJ; Lindman B; Miguel MG; Olsson U
    Langmuir; 2012 Mar; 28(9):4131-41. PubMed ID: 22296569
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Encapsulation of cells in alginate gels.
    Sánchez P; Hernández RM; Pedraz JL; Orive G
    Methods Mol Biol; 2013; 1051():313-25. PubMed ID: 23934814
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Using a microfluidic chip and internal gelation reaction for monodisperse calcium alginate microparticles generation.
    Huang KS; Lai TH; Lin YC
    Front Biosci; 2007 May; 12():3061-7. PubMed ID: 17485282
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development of a nutraceutical nano-delivery system through emulsification/internal gelation of alginate.
    Mokhtari S; Jafari SM; Assadpour E
    Food Chem; 2017 Aug; 229():286-295. PubMed ID: 28372176
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cation effect on slow release from alginate beads: a fluorescence study.
    Kaygusuz H; Erim FB; Pekcan O; Akın Evingür G
    J Fluoresc; 2014 Jan; 24(1):161-7. PubMed ID: 23900849
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.