BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 28715469)

  • 1. Cofactor engineering improved CALB production in Pichia pastoris through heterologous expression of NADH oxidase and adenylate kinase.
    Jayachandran C; Palanisamy Athiyaman B; Sankaranarayanan M
    PLoS One; 2017; 12(7):e0181370. PubMed ID: 28715469
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Redox Engineering by Ectopic Overexpression of NADH Kinase in Recombinant Pichia pastoris (
    Tomàs-Gamisans M; Andrade CCP; Maresca F; Monforte S; Ferrer P; Albiol J
    Appl Environ Microbiol; 2020 Mar; 86(6):. PubMed ID: 31757828
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Engineering the Pichia pastoris methanol oxidation pathway for improved NADH regeneration during whole-cell biotransformation.
    Schroer K; Peter Luef K; Stefan Hartner F; Glieder A; Pscheidt B
    Metab Eng; 2010 Jan; 12(1):8-17. PubMed ID: 19716429
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cofactor engineering to regulate NAD
    Su L; Shen Y; Zhang W; Gao T; Shang Z; Wang M
    Microb Cell Fact; 2017 Oct; 16(1):182. PubMed ID: 29084539
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High-level extracellular production and characterization of Candida antarctica lipase B in Pichia pastoris.
    Eom GT; Lee SH; Song BK; Chung KW; Kim YW; Song JK
    J Biosci Bioeng; 2013 Aug; 116(2):165-70. PubMed ID: 23571105
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cofactor engineering in Saccharomyces cerevisiae: Expression of a H2O-forming NADH oxidase and impact on redox metabolism.
    Heux S; Cachon R; Dequin S
    Metab Eng; 2006 Jul; 8(4):303-14. PubMed ID: 16473032
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Expression of Lactococcus lactis NADH oxidase increases 2,3-butanediol production in Pdc-deficient Saccharomyces cerevisiae.
    Kim JW; Seo SO; Zhang GC; Jin YS; Seo JH
    Bioresour Technol; 2015 Sep; 191():512-9. PubMed ID: 25769689
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Metabolic impact of redox cofactor perturbations in Saccharomyces cerevisiae.
    Hou J; Lages NF; Oldiges M; Vemuri GN
    Metab Eng; 2009; 11(4-5):253-61. PubMed ID: 19446033
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High-level expression and characterization of Galactomyces geotrichum (BT107) lipase I in Pichia pastoris.
    Fernández L; Pérez-Victoria I; Zafra A; Benítez PL; Morales JC; Velasco J; Adrio JL
    Protein Expr Purif; 2006 Oct; 49(2):256-64. PubMed ID: 16884921
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of molecular chaperones on the expression of Candida antarctica lipase B in Pichia pastoris.
    Samuel P; Prasanna Vadhana AK; Kamatchi R; Antony A; Meenakshisundaram S
    Microbiol Res; 2013 Dec; 168(10):615-20. PubMed ID: 23871144
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Recombinant protein expression in Pichia pastoris strains with an engineered methanol utilization pathway.
    Krainer FW; Dietzsch C; Hajek T; Herwig C; Spadiut O; Glieder A
    Microb Cell Fact; 2012 Feb; 11():22. PubMed ID: 22330134
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization of the Mg2+-activated ATPase activity in smooth-muscle membranes. NADH oxidase and adenylate kinase interfere with the NADH-coupled enzyme assay.
    Missiaen L; Wuytack F; Casteels R
    Biochem J; 1988 Mar; 250(2):579-88. PubMed ID: 2833248
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enhancement of lipase r27RCL production in Pichia pastoris by regulating gene dosage and co-expression with chaperone protein disulfide isomerase.
    Sha C; Yu XW; Lin NX; Zhang M; Xu Y
    Enzyme Microb Technol; 2013 Dec; 53(6-7):438-43. PubMed ID: 24315648
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Expression in Pichia pastoris of Candida antarctica lipase B and lipase B fused to a cellulose-binding domain.
    Rotticci-Mulder JC; Gustavsson M; Holmquist M; Hult K; Martinelle M
    Protein Expr Purif; 2001 Apr; 21(3):386-92. PubMed ID: 11281712
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Expression of a Rhizopus oryzae lipase in Pichia pastoris under control of the nitrogen source-regulated formaldehyde dehydrogenase promoter.
    Resina D; Serrano A; Valero F; Ferrer P
    J Biotechnol; 2004 Apr; 109(1-2):103-13. PubMed ID: 15063618
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Display of fungal hydrophobin on the Pichia pastoris cell surface and its influence on Candida antarctica lipase B.
    Wang P; He J; Sun Y; Reynolds M; Zhang L; Han S; Liang S; Sui H; Lin Y
    Appl Microbiol Biotechnol; 2016 Jul; 100(13):5883-95. PubMed ID: 26969039
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Improved secretion of Candida antarctica lipase B with its native signal peptide in Pichia pastoris.
    Vadhana AK; Samuel P; Berin RM; Krishna J; Kamatchi K; Meenakshisundaram S
    Enzyme Microb Technol; 2013 Mar; 52(3):177-83. PubMed ID: 23410929
    [TBL] [Abstract][Full Text] [Related]  

  • 18. RNA accumulation in Candida tropicalis based on cofactor engineering.
    Li B; Liu Y; Wang L; Hong J; Chen Y; Ying H
    FEMS Yeast Res; 2019 May; 19(3):. PubMed ID: 30942847
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Intracellular expression of Vitreoscilla hemoglobin improves production of Yarrowia lipolytica lipase LIP2 in a recombinant Pichia pastoris.
    Wang X; Sun Y; Shen X; Ke F; Zhao H; Liu Y; Xu L; Yan Y
    Enzyme Microb Technol; 2012 Jan; 50(1):22-8. PubMed ID: 22133436
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Double Candida antarctica lipase B co-display on Pichia pastoris cell surface based on a self-processing foot-and-mouth disease virus 2A peptide.
    Sun YF; Lin Y; Zhang JH; Zheng SP; Ye YR; Liang XX; Han SY
    Appl Microbiol Biotechnol; 2012 Dec; 96(6):1539-50. PubMed ID: 22797600
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.