These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 28715678)

  • 1. Effects of the distribution density of a biomass combined heat and power plant network on heat utilisation efficiency in village-town systems.
    Zhang Y; Kang J
    J Environ Manage; 2017 Nov; 202(Pt 1):21-28. PubMed ID: 28715678
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of population density of a village and town system on the transportation cost for a biomass combined heat and power plant.
    Zhang Y; Qin C; Liu Y
    J Environ Manage; 2018 Oct; 223():444-451. PubMed ID: 29957418
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The effect of biomass raw material collection distance on energy surplus factor.
    Ma C; Zhang Y; Ma K
    J Environ Manage; 2022 Sep; 317():115461. PubMed ID: 35751263
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Performance evaluation of adding ethanol production into an existing combined heat and power plant.
    Starfelt F; Thorin E; Dotzauer E; Yan J
    Bioresour Technol; 2010 Jan; 101(2):613-8. PubMed ID: 19758800
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Creating markets for combined heat and power and clean distributed generation in New York State.
    Bourgeois TG; Hedman B; Zalcman F
    Environ Pollut; 2003; 123(3):451-62. PubMed ID: 12667773
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Environmental sustainability of integrating the organic Rankin cycle with anaerobic digestion and combined heat and power generation.
    Bacenetti J; Fusi A; Azapagic A
    Sci Total Environ; 2019 Mar; 658():684-696. PubMed ID: 30678020
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reduction of CO(2)-emissions by using biomass in combustion and digestion plants.
    Hoffmann G; Schingnitz D; Schnapke A; Bilitewski B
    Waste Manag; 2010 May; 30(5):893-901. PubMed ID: 20060281
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Assessment of a residual biomass micro-combined heat and power system based on an organic Rankine Cycle coupled to a boiler.
    Villarino YT; Rial LP; Rodríguez-Abalde Á
    J Environ Manage; 2022 Jan; 301():113832. PubMed ID: 34624578
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Annual performance analysis and comparison of pellet production integrated with an existing combined heat and power plant.
    Song H; Dotzauer E; Thorin E; Yan J
    Bioresour Technol; 2011 May; 102(10):6317-25. PubMed ID: 21377354
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sustainability assessment of the whole biomass-to-energy chain of a combined heat and power plant based on biomass gasification: biomass supply chain management and life cycle assessment.
    Costa M; Piazzullo D; Di Battista D; De Vita A
    J Environ Manage; 2022 Sep; 317():115434. PubMed ID: 35751252
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Energetic valorization of wood waste: estimation of the reduction in CO2 emissions.
    Vanneste J; Van Gerven T; Vander Putten E; Van der Bruggen B; Helsen L
    Sci Total Environ; 2011 Sep; 409(19):3595-602. PubMed ID: 21719072
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optimization and economic evaluation of industrial gas production and combined heat and power generation from gasification of corn stover and distillers grains.
    Kumar A; Demirel Y; Jones DD; Hanna MA
    Bioresour Technol; 2010 May; 101(10):3696-701. PubMed ID: 20096571
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaluation of the environmental sustainability of different waste-to-energy plant configurations.
    Lombardi L; Carnevale EA
    Waste Manag; 2018 Mar; 73():232-246. PubMed ID: 28728789
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Technoeconomic modelling and environmental assessment of a modern PEMFC CHP system: a case study of an eco-house at University of Nottingham.
    Sui S; Rasheed R; Li Q; Su Y; Riffat S
    Environ Sci Pollut Res Int; 2019 Oct; 26(29):29883-29895. PubMed ID: 31410831
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Assessment and potential-site determination of a wheat straw power plant by Aspen Plus and multi-criteria GIS model.
    Coronado MA; García C; Montero G; Ayala JR; Cervantes LK; Montes DG; León JÁ; Torres R; Sagaste CA
    Waste Manag Res; 2021 Jul; 39(7):985-994. PubMed ID: 33357135
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Economic evaluation of improvements in a waste-to-energy combined heat and power plant.
    Eboh FC; Andersson BÅ; Richards T
    Waste Manag; 2019 Dec; 100():75-83. PubMed ID: 31525675
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Energetic approach of biomass hydrolysis in supercritical water.
    Cantero DA; Vaquerizo L; Mato F; Bermejo MD; Cocero MJ
    Bioresour Technol; 2015 Mar; 179():136-143. PubMed ID: 25536511
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Techno-economic analysis of CHP system supplied by waste forest biomass.
    Borsukiewicz-Gozdur A; Klonowicz P; Król D; Wiśniewski S; Zwarycz-Makles K
    Waste Manag Res; 2015 Aug; 33(8):748-54. PubMed ID: 26142426
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synergies of wind power and electrified space heating: case study for Beijing.
    Chen X; Lu X; McElroy MB; Nielsen CP; Kang C
    Environ Sci Technol; 2014; 48(3):2016-24. PubMed ID: 24383490
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electricity generation: options for reduction in carbon emissions.
    Whittington HW
    Philos Trans A Math Phys Eng Sci; 2002 Aug; 360(1797):1653-68. PubMed ID: 12460490
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.