BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

282 related articles for article (PubMed ID: 28715755)

  • 1. Adsorption of mercury (II) from aqueous solutions using FeS and pyrite: A comparative study.
    Sun Y; Lv D; Zhou J; Zhou X; Lou Z; Baig SA; Xu X
    Chemosphere; 2017 Oct; 185():452-461. PubMed ID: 28715755
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sorption of mercuric ion by synthetic nanocrystalline mackinawite (FeS).
    Jeong HY; Klaue B; Blum JD; Hayes KF
    Environ Sci Technol; 2007 Nov; 41(22):7699-705. PubMed ID: 18075077
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Immobilization of aqueous Hg(II) by mackinawite (FeS).
    Liu J; Valsaraj KT; Devai I; DeLaune RD
    J Hazard Mater; 2008 Sep; 157(2-3):432-40. PubMed ID: 18280650
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Immobilization of mercury by carboxymethyl cellulose stabilized iron sulfide nanoparticles: reaction mechanisms and effects of stabilizer and water chemistry.
    Gong Y; Liu Y; Xiong Z; Zhao D
    Environ Sci Technol; 2014 Apr; 48(7):3986-94. PubMed ID: 24568693
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reactive iron sulfide (FeS)-supported ultrafiltration for removal of mercury (Hg(II)) from water.
    Han DS; Orillano M; Khodary A; Duan Y; Batchelor B; Abdel-Wahab A
    Water Res; 2014 Apr; 53():310-21. PubMed ID: 24530550
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Immobilization of mercury by pyrite (FeS2).
    Bower J; Savage KS; Weinman B; Barnett MO; Hamilton WP; Harper WF
    Environ Pollut; 2008 Nov; 156(2):504-14. PubMed ID: 18367298
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High efficient removal of mercury from aqueous solution by polyaniline/humic acid nanocomposite.
    Zhang Y; Li Q; Sun L; Tang R; Zhai J
    J Hazard Mater; 2010 Mar; 175(1-3):404-9. PubMed ID: 19896766
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nano modification of NZVI with an aquatic plant Azolla filiculoides to remove Pb(II) and Hg(II) from water: Aging time and mechanism study.
    Arshadi M; Abdolmaleki MK; Mousavinia F; Foroughifard S; Karimzadeh A
    J Colloid Interface Sci; 2017 Jan; 486():296-308. PubMed ID: 27723483
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High removal efficacy of Hg(II) and MeHg(II) ions from aqueous solution by organoalkoxysilane-grafted lignocellulosic waste biomass.
    Saman N; Johari K; Song ST; Kong H; Cheu SC; Mat H
    Chemosphere; 2017 Mar; 171():19-30. PubMed ID: 28002763
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Adsorption of Sb(Ⅴ) in Water by Natural Pyrite: Performance and Mechanism].
    Shi S; Wu QY; Li XZ; Huang MH
    Huan Jing Ke Xue; 2020 Sep; 41(9):4124-4132. PubMed ID: 33124294
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modification and characterization of PET fibers for fast removal of Hg(II), Cu(II) and Co(II) metal ions from aqueous solutions.
    Monier M; Abdel-Latif DA
    J Hazard Mater; 2013 Apr; 250-251():122-30. PubMed ID: 23435202
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Adsorption/reduction of Hg(II) and Pb(II) from aqueous solutions by using bone ash/nZVI composite: effects of aging time, Fe loading quantity and co-existing ions.
    Gil A; Amiri MJ; Abedi-Koupai J; Eslamian S
    Environ Sci Pollut Res Int; 2018 Jan; 25(3):2814-2829. PubMed ID: 29143259
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Use of red mud (bauxite residue) for the retention of aqueous inorganic mercury(II).
    Rubinos DA; Barral MT
    Environ Sci Pollut Res Int; 2015 Nov; 22(22):17550-68. PubMed ID: 26141977
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Volatilization and sorption of dissolved mercury by metallic iron of different particle sizes: implications for treatment of mercury contaminated water effluents.
    Vernon JD; Bonzongo JC
    J Hazard Mater; 2014 Jul; 276():408-14. PubMed ID: 24929302
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of the presence of pyrite traces on silver behavior in natural porous media.
    Charrière D; Hernández Cortázar Mde A; Behra P
    J Colloid Interface Sci; 2015 May; 446():379-85. PubMed ID: 25722107
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Removal of mercury from water by multi-walled carbon nanotubes.
    Tawabini B; Al-Khaldi S; Atieh M; Khaled M
    Water Sci Technol; 2010; 61(3):591-8. PubMed ID: 20150694
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fluorescence-sensitive adsorbent based on cellulose using for mercury detection and removal from aqueous solution with selective "on-off" response.
    Li M; Li B; Zhou L; Zhang Y; Cao Q; Wang R; Xiao H
    Int J Biol Macromol; 2019 Jul; 132():1185-1192. PubMed ID: 30974138
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Improved Pb(II) removal in aqueous solution by sulfide@biochar and polysaccharose-FeS@ biochar composites: Efficiencies and mechanisms.
    Liu R; Zhang Y; Hu B; Wang H
    Chemosphere; 2022 Jan; 287(Pt 1):132087. PubMed ID: 34523465
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cr(VI)-contaminated groundwater remediation with simulated permeable reactive barrier (PRB) filled with natural pyrite as reactive material: Environmental factors and effectiveness.
    Liu Y; Mou H; Chen L; Mirza ZA; Liu L
    J Hazard Mater; 2015 Nov; 298():83-90. PubMed ID: 26026959
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Polyamide magnetic palygorskite for the simultaneous removal of Hg(II) and methyl mercury; with factorial design analysis.
    Saleh TA; Tuzen M; Sarı A
    J Environ Manage; 2018 Apr; 211():323-333. PubMed ID: 29421649
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.