These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
266 related articles for article (PubMed ID: 28715857)
1. Difference in growth and coalescing patterns of droplets on bi-philic surfaces with varying spatial distribution. Garimella MM; Koppu S; Kadlaskar SS; Pillutla V; Abhijeet ; Choi W J Colloid Interface Sci; 2017 Nov; 505():1065-1073. PubMed ID: 28715857 [TBL] [Abstract][Full Text] [Related]
2. Wettability Contrast in the Hexagonally Patterned Gold Substrate of Distinct Morphologies for Enhanced Fog Harvesting. Malani S B; Viswanath P Langmuir; 2021 Jul; 37(27):8281-8289. PubMed ID: 34189916 [TBL] [Abstract][Full Text] [Related]
3. Multimode multidrop serial coalescence effects during condensation on hierarchical superhydrophobic surfaces. Rykaczewski K; Paxson AT; Anand S; Chen X; Wang Z; Varanasi KK Langmuir; 2013 Jan; 29(3):881-91. PubMed ID: 23259731 [TBL] [Abstract][Full Text] [Related]
4. Surfactant solutions and porous substrates: spreading and imbibition. Starov VM Adv Colloid Interface Sci; 2004 Nov; 111(1-2):3-27. PubMed ID: 15571660 [TBL] [Abstract][Full Text] [Related]
5. Droplet coalescence on water repellant surfaces. Nam Y; Seo D; Lee C; Shin S Soft Matter; 2015 Jan; 11(1):154-60. PubMed ID: 25375970 [TBL] [Abstract][Full Text] [Related]
6. Dynamics of fog droplets on a harp wire. Kowalski NG; Boreyko JB Soft Matter; 2022 Sep; 18(37):7148-7158. PubMed ID: 36093935 [TBL] [Abstract][Full Text] [Related]
7. Effects of Engineered Wettability on the Efficiency of Dew Collection. Gerasopoulos K; Luedeman WL; Ölçeroglu E; McCarthy M; Benkoski JJ ACS Appl Mater Interfaces; 2018 Jan; 10(4):4066-4076. PubMed ID: 29297673 [TBL] [Abstract][Full Text] [Related]
8. Wetting behavior of water and oil droplets in three-phase interfaces for hydrophobicity/philicity and oleophobicity/philicity. Jung YC; Bhushan B Langmuir; 2009 Dec; 25(24):14165-73. PubMed ID: 19637877 [TBL] [Abstract][Full Text] [Related]
9. Directional Passive Transport of Microdroplets in Oil-Infused Diverging Channels for Effective Condensate Removal. Li H; Aili A; Alhosani MH; Ge Q; Zhang T ACS Appl Mater Interfaces; 2018 Jun; 10(24):20910-20919. PubMed ID: 29792417 [TBL] [Abstract][Full Text] [Related]
10. Unidirectional Fast Growth and Forced Jumping of Stretched Droplets on Nanostructured Microporous Surfaces. Aili A; Li H; Alhosani MH; Zhang T ACS Appl Mater Interfaces; 2016 Aug; 8(33):21776-86. PubMed ID: 27486890 [TBL] [Abstract][Full Text] [Related]
11. Design and Fabrication of a Hybrid Superhydrophobic-Hydrophilic Surface That Exhibits Stable Dropwise Condensation. Mondal B; Mac Giolla Eain M; Xu Q; Egan VM; Punch J; Lyons AM ACS Appl Mater Interfaces; 2015 Oct; 7(42):23575-88. PubMed ID: 26372672 [TBL] [Abstract][Full Text] [Related]
12. Desert Beetle-Inspired Superwettable Patterned Surfaces for Water Harvesting. Yu Z; Yun FF; Wang Y; Yao L; Dou S; Liu K; Jiang L; Wang X Small; 2017 Sep; 13(36):. PubMed ID: 28719031 [TBL] [Abstract][Full Text] [Related]
13. Hierarchical Condensation. Yan X; Chen F; Sett S; Chavan S; Li H; Feng L; Li L; Zhao F; Zhao C; Huang Z; Miljkovic N ACS Nano; 2019 Jul; 13(7):8169-8184. PubMed ID: 31265236 [TBL] [Abstract][Full Text] [Related]
14. Evaporation-Crystallization Method to Promote Coalescence-Induced Jumping on Superhydrophobic Surfaces. Han T; Choi Y; Kwon JT; Kim MH; Jo H Langmuir; 2020 Aug; 36(33):9843-9848. PubMed ID: 32787044 [TBL] [Abstract][Full Text] [Related]
15. Using amphiphilic nanostructures to enable long-range ensemble coalescence and surface rejuvenation in dropwise condensation. Anderson DM; Gupta MK; Voevodin AA; Hunter CN; Putnam SA; Tsukruk VV; Fedorov AG ACS Nano; 2012 Apr; 6(4):3262-8. PubMed ID: 22456273 [TBL] [Abstract][Full Text] [Related]
16. How coalescing droplets jump. Enright R; Miljkovic N; Sprittles J; Nolan K; Mitchell R; Wang EN ACS Nano; 2014 Oct; 8(10):10352-62. PubMed ID: 25171210 [TBL] [Abstract][Full Text] [Related]
17. Induced detachment of coalescing droplets on superhydrophobic surfaces. Farhangi MM; Graham PJ; Choudhury NR; Dolatabadi A Langmuir; 2012 Jan; 28(2):1290-303. PubMed ID: 22171956 [TBL] [Abstract][Full Text] [Related]
18. Stability of Evaporating Droplets on Chemically Patterned Surfaces. Hartmann M; Hardt S Langmuir; 2019 Apr; 35(14):4868-4875. PubMed ID: 30876340 [TBL] [Abstract][Full Text] [Related]
19. Effect of droplet morphology on growth dynamics and heat transfer during condensation on superhydrophobic nanostructured surfaces. Miljkovic N; Enright R; Wang EN ACS Nano; 2012 Feb; 6(2):1776-85. PubMed ID: 22293016 [TBL] [Abstract][Full Text] [Related]
20. Hierarchical Hydrophilic/Hydrophobic/Bumpy Janus Membrane Fabricated by Femtosecond Laser Ablation for Highly Efficient Fog Harvesting. Su Y; Chen L; Jiao Y; Zhang J; Li C; Zhang Y; Zhang Y ACS Appl Mater Interfaces; 2021 Jun; 13(22):26542-26550. PubMed ID: 34042424 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]