These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

204 related articles for article (PubMed ID: 28715970)

  • 1. Scaffold-in-Scaffold Potential to Induce Growth and Differentiation of Cardiac Progenitor Cells.
    Ciocci M; Mochi F; Carotenuto F; Di Giovanni E; Prosposito P; Francini R; De Matteis F; Reshetov I; Casalboni M; Melino S; Di Nardo P
    Stem Cells Dev; 2017 Oct; 26(19):1438-1447. PubMed ID: 28715970
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Three-dimensional poly-(ε-caprolactone) nanofibrous scaffolds directly promote the cardiomyocyte differentiation of murine-induced pluripotent stem cells through Wnt/β-catenin signaling.
    Chen Y; Zeng D; Ding L; Li XL; Liu XT; Li WJ; Wei T; Yan S; Xie JH; Wei L; Zheng QS
    BMC Cell Biol; 2015 Sep; 16():22. PubMed ID: 26335746
    [TBL] [Abstract][Full Text] [Related]  

  • 3. 3D-Printed Extracellular Matrix/Polyethylene Glycol Diacrylate Hydrogel Incorporating the Anti-inflammatory Phytomolecule Honokiol for Regeneration of Osteochondral Defects.
    Zhu S; Chen P; Chen Y; Li M; Chen C; Lu H
    Am J Sports Med; 2020 Sep; 48(11):2808-2818. PubMed ID: 32762553
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nanocellulose/PEGDA aerogel scaffolds with tunable modulus prepared by stereolithography for three-dimensional cell culture.
    Tang A; Li J; Li J; Zhao S; Liu W; Liu T; Wang J; Liu Y
    J Biomater Sci Polym Ed; 2019 Jul; 30(10):797-814. PubMed ID: 30940007
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanical Properties, Cytocompatibility and Manufacturability of Chitosan:PEGDA Hybrid-Gel Scaffolds by Stereolithography.
    Morris VB; Nimbalkar S; Younesi M; McClellan P; Akkus O
    Ann Biomed Eng; 2017 Jan; 45(1):286-296. PubMed ID: 27164837
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Myocardial scaffold-based cardiac tissue engineering: application of coordinated mechanical and electrical stimulations.
    Wang B; Wang G; To F; Butler JR; Claude A; McLaughlin RM; Williams LN; de Jongh Curry AL; Liao J
    Langmuir; 2013 Sep; 29(35):11109-17. PubMed ID: 23923967
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Injectable silk fibroin hydrogels functionalized with microspheres as adult stem cells-carrier systems.
    Ciocci M; Cacciotti I; Seliktar D; Melino S
    Int J Biol Macromol; 2018 Mar; 108():960-971. PubMed ID: 29113887
    [TBL] [Abstract][Full Text] [Related]  

  • 8. 3D printing of chitooligosaccharide-polyethylene glycol diacrylate hydrogel inks for bone tissue regeneration.
    Rajabi M; Cabral JD; Saunderson S; Ali MA
    J Biomed Mater Res A; 2023 Sep; 111(9):1468-1481. PubMed ID: 37066870
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparative effectiveness of three-dimensional scaffold, differentiation media and co-culture with native cardiomyocytes to trigger in vitro cardiogenic differentiation of menstrual blood and bone marrow stem cells.
    Rahimi M; Zarnani AH; Mobini S; Khorasani S; Darzi M; Kazemnejad S
    Biologicals; 2018 Jul; 54():13-21. PubMed ID: 29884574
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Living nano-micro fibrous woven fabric/hydrogel composite scaffolds for heart valve engineering.
    Wu S; Duan B; Qin X; Butcher JT
    Acta Biomater; 2017 Mar; 51():89-100. PubMed ID: 28110071
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Design of a Novel Composite H2 S-Releasing Hydrogel for Cardiac Tissue Repair.
    Mauretti A; Neri A; Kossover O; Seliktar D; Nardo PD; Melino S
    Macromol Biosci; 2016 Jun; 16(6):847-58. PubMed ID: 26857526
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Engineered extracellular microenvironment with a tunable mechanical property for controlling cell behavior and cardiomyogenic fate of cardiac stem cells.
    Choi MY; Kim JT; Lee WJ; Lee Y; Park KM; Yang YI; Park KD
    Acta Biomater; 2017 Mar; 50():234-248. PubMed ID: 28063988
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Acellular cardiac extracellular matrix as a scaffold for tissue engineering: in vitro cell support, remodeling, and biocompatibility.
    Eitan Y; Sarig U; Dahan N; Machluf M
    Tissue Eng Part C Methods; 2010 Aug; 16(4):671-83. PubMed ID: 19780649
    [TBL] [Abstract][Full Text] [Related]  

  • 14. 3D Printed Pericardium Hydrogels To Promote Wound Healing in Vascular Applications.
    Bracaglia LG; Messina M; Winston S; Kuo CY; Lerman M; Fisher JP
    Biomacromolecules; 2017 Nov; 18(11):3802-3811. PubMed ID: 28976740
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interwoven Aligned Conductive Nanofiber Yarn/Hydrogel Composite Scaffolds for Engineered 3D Cardiac Anisotropy.
    Wu Y; Wang L; Guo B; Ma PX
    ACS Nano; 2017 Jun; 11(6):5646-5659. PubMed ID: 28590127
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bioactive composites based on double network approach with tailored mechanical, physico-chemical, and biological features.
    D'Amora U; Ronca A; Raucci MG; Lin H; Soriente A; Fan Y; Zhang X; Ambrosio L
    J Biomed Mater Res A; 2018 Dec; 106(12):3079-3089. PubMed ID: 30208257
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Surface modification of 3D-printed porous scaffolds via mussel-inspired polydopamine and effective immobilization of rhBMP-2 to promote osteogenic differentiation for bone tissue engineering.
    Lee SJ; Lee D; Yoon TR; Kim HK; Jo HH; Park JS; Lee JH; Kim WD; Kwon IK; Park SA
    Acta Biomater; 2016 Aug; 40():182-191. PubMed ID: 26868173
    [TBL] [Abstract][Full Text] [Related]  

  • 18. OPLA scaffold, collagen I, and horse serum induce an higher degree of myogenic differentiation of adult rat cardiac stem cells.
    Di Felice V; Ardizzone NM; De Luca A; Marcianò V; Marino Gammazza A; Macaluso F; Manente L; Cappello F; De Luca A; Zummo G
    J Cell Physiol; 2009 Dec; 221(3):729-39. PubMed ID: 19725057
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A novel bioprinting method and system for forming hybrid tissue engineering constructs.
    Shanjani Y; Pan CC; Elomaa L; Yang Y
    Biofabrication; 2015 Dec; 7(4):045008. PubMed ID: 26685102
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development of Electrically Conductive Double-Network Hydrogels via One-Step Facile Strategy for Cardiac Tissue Engineering.
    Yang B; Yao F; Hao T; Fang W; Ye L; Zhang Y; Wang Y; Li J; Wang C
    Adv Healthc Mater; 2016 Feb; 5(4):474-88. PubMed ID: 26626543
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.