These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

200 related articles for article (PubMed ID: 28715970)

  • 21. Development of Electrically Conductive Double-Network Hydrogels via One-Step Facile Strategy for Cardiac Tissue Engineering.
    Yang B; Yao F; Hao T; Fang W; Ye L; Zhang Y; Wang Y; Li J; Wang C
    Adv Healthc Mater; 2016 Feb; 5(4):474-88. PubMed ID: 26626543
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Fabrication of a Highly Aligned Neural Scaffold via a Table Top Stereolithography 3D Printing and Electrospinning.
    Lee SJ; Nowicki M; Harris B; Zhang LG
    Tissue Eng Part A; 2017 Jun; 23(11-12):491-502. PubMed ID: 27998214
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Biological functionality of extracellular matrix-ornamented three-dimensional printed hydroxyapatite scaffolds.
    Kumar A; Nune KC; Misra RD
    J Biomed Mater Res A; 2016 Jun; 104(6):1343-51. PubMed ID: 26799466
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Water-based polyurethane 3D printed scaffolds with controlled release function for customized cartilage tissue engineering.
    Hung KC; Tseng CS; Dai LG; Hsu SH
    Biomaterials; 2016 Mar; 83():156-68. PubMed ID: 26774563
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Uncoupled investigation of scaffold modulus and mesh size on smooth muscle cell behavior.
    Munoz-Pinto DJ; Bulick AS; Hahn MS
    J Biomed Mater Res A; 2009 Jul; 90(1):303-16. PubMed ID: 19402139
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Glycol chitin-based thermoresponsive hydrogel scaffold supplemented with enamel matrix derivative promotes odontogenic differentiation of human dental pulp cells.
    Park SJ; Li Z; Hwang IN; Huh KM; Min KS
    J Endod; 2013 Aug; 39(8):1001-7. PubMed ID: 23880267
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Cardiac extracellular matrix hydrogel together with or without inducer cocktail improves human adipose tissue-derived stem cells differentiation into cardiomyocyte-like cells.
    Baghalishahi M; Efthekhar-Vaghefi SH; Piryaei A; Nematolahi-Mahani SN; Mollaei HR; Sadeghi Y
    Biochem Biophys Res Commun; 2018 Jul; 502(2):215-225. PubMed ID: 29792866
    [TBL] [Abstract][Full Text] [Related]  

  • 28. 3D bioprinting of urethra with PCL/PLCL blend and dual autologous cells in fibrin hydrogel: An in vitro evaluation of biomimetic mechanical property and cell growth environment.
    Zhang K; Fu Q; Yoo J; Chen X; Chandra P; Mo X; Song L; Atala A; Zhao W
    Acta Biomater; 2017 Mar; 50():154-164. PubMed ID: 27940192
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Fibrin scaffold could promote survival of the human adipose-derived stem cells during differentiation into cardiomyocyte-like cells.
    Bagheri-Hosseinabadi Z; Mesbah-Namin SA; Salehinejad P; Seyedi F
    Cell Tissue Res; 2018 Jun; 372(3):571-589. PubMed ID: 29508071
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Integrating valve-inspired design features into poly(ethylene glycol) hydrogel scaffolds for heart valve tissue engineering.
    Zhang X; Xu B; Puperi DS; Yonezawa AL; Wu Y; Tseng H; Cuchiara ML; West JL; Grande-Allen KJ
    Acta Biomater; 2015 Mar; 14():11-21. PubMed ID: 25433168
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Application of visible light-based projection stereolithography for live cell-scaffold fabrication with designed architecture.
    Lin H; Zhang D; Alexander PG; Yang G; Tan J; Cheng AW; Tuan RS
    Biomaterials; 2013 Jan; 34(2):331-9. PubMed ID: 23092861
    [TBL] [Abstract][Full Text] [Related]  

  • 32. 3D Printed Silicone-Hydrogel Scaffold with Enhanced Physicochemical Properties.
    Mohanty S; Alm M; Hemmingsen M; Dolatshahi-Pirouz A; Trifol J; Thomsen P; Dufva M; Wolff A; Emnéus J
    Biomacromolecules; 2016 Apr; 17(4):1321-9. PubMed ID: 26902925
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Novel xeno-free human heart matrix-derived three-dimensional scaffolds.
    Holt-Casper D; Theisen JM; Moreno AP; Warren M; Silva F; Grainger DW; Bull DA; Patel AN
    J Transl Med; 2015 Jun; 13():194. PubMed ID: 26084398
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Use of the polycation polyethyleneimine to improve the physical properties of alginate-hyaluronic acid hydrogel during fabrication of tissue repair scaffolds.
    Rajaram A; Schreyer DJ; Chen DX
    J Biomater Sci Polym Ed; 2015; 26(7):433-45. PubMed ID: 25661399
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Multilayer microfluidic PEGDA hydrogels.
    Cuchiara MP; Allen AC; Chen TM; Miller JS; West JL
    Biomaterials; 2010 Jul; 31(21):5491-7. PubMed ID: 20447685
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Cellular Interaction of Bone Marrow Mesenchymal Stem Cells with Polymer and Hydrogel 3D Microscaffold Templates.
    Costa BNL; Adão RMR; Maibohm C; Accardo A; Cardoso VF; Nieder JB
    ACS Appl Mater Interfaces; 2022 Mar; 14(11):13013-13024. PubMed ID: 35282678
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Effect of 3D-scaffold formation on differentiation and survival in human neural progenitor cells.
    Ortinau S; Schmich J; Block S; Liedmann A; Jonas L; Weiss DG; Helm CA; Rolfs A; Frech MJ
    Biomed Eng Online; 2010 Nov; 9():70. PubMed ID: 21070668
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Integrating biologically inspired nanomaterials and table-top stereolithography for 3D printed biomimetic osteochondral scaffolds.
    Castro NJ; O'Brien J; Zhang LG
    Nanoscale; 2015 Sep; 7(33):14010-22. PubMed ID: 26234364
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Pharmacologically active microcarriers associated with thermosensitive hydrogel as a growth factor releasing biomimetic 3D scaffold for cardiac tissue-engineering.
    Karam JP; Muscari C; Sindji L; Bastiat G; Bonafè F; Venier-Julienne MC; Montero-Menei NC
    J Control Release; 2014 Oct; 192():82-94. PubMed ID: 24998940
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A Stereolithography-Based 3D Printed Hybrid Scaffold for In Situ Cartilage Defect Repair.
    Aisenbrey EA; Tomaschke A; Kleinjan E; Muralidharan A; Pascual-Garrido C; McLeod RR; Ferguson VL; Bryant SJ
    Macromol Biosci; 2018 Feb; 18(2):. PubMed ID: 29266791
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.