BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

347 related articles for article (PubMed ID: 28716036)

  • 1. Short DNA sequence patterns accurately identify broadly active human enhancers.
    Colbran LL; Chen L; Capra JA
    BMC Genomics; 2017 Jul; 18(1):536. PubMed ID: 28716036
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dissection of thousands of cell type-specific enhancers identifies dinucleotide repeat motifs as general enhancer features.
    Yáñez-Cuna JO; Arnold CD; Stampfel G; Boryń LM; Gerlach D; Rath M; Stark A
    Genome Res; 2014 Jul; 24(7):1147-56. PubMed ID: 24714811
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization of sequence determinants of enhancer function using natural genetic variation.
    Yang MG; Ling E; Cowley CJ; Greenberg ME; Vierbuchen T
    Elife; 2022 Aug; 11():. PubMed ID: 36043696
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular dissection of cis-regulatory modules at the Drosophila bithorax complex reveals critical transcription factor signature motifs.
    Starr MO; Ho MC; Gunther EJ; Tu YK; Shur AS; Goetz SE; Borok MJ; Kang V; Drewell RA
    Dev Biol; 2011 Nov; 359(2):290-302. PubMed ID: 21821017
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhancers display constrained sequence flexibility and context-specific modulation of motif function.
    Reiter F; de Almeida BP; Stark A
    Genome Res; 2023 Mar; 33(3):346-358. PubMed ID: 36941077
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Prediction of gene regulatory enhancers across species reveals evolutionarily conserved sequence properties.
    Chen L; Fish AE; Capra JA
    PLoS Comput Biol; 2018 Oct; 14(10):e1006484. PubMed ID: 30286077
    [TBL] [Abstract][Full Text] [Related]  

  • 7. DeepSTARR predicts enhancer activity from DNA sequence and enables the de novo design of synthetic enhancers.
    de Almeida BP; Reiter F; Pagani M; Stark A
    Nat Genet; 2022 May; 54(5):613-624. PubMed ID: 35551305
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Computational identification of developmental enhancers: conservation and function of transcription factor binding-site clusters in Drosophila melanogaster and Drosophila pseudoobscura.
    Berman BP; Pfeiffer BD; Laverty TR; Salzberg SL; Rubin GM; Eisen MB; Celniker SE
    Genome Biol; 2004; 5(9):R61. PubMed ID: 15345045
    [TBL] [Abstract][Full Text] [Related]  

  • 9. McEnhancer: predicting gene expression via semi-supervised assignment of enhancers to target genes.
    Hafez D; Karabacak A; Krueger S; Hwang YC; Wang LS; Zinzen RP; Ohler U
    Genome Biol; 2017 Oct; 18(1):199. PubMed ID: 29070071
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A machine learning approach for identifying novel cell type-specific transcriptional regulators of myogenesis.
    Busser BW; Taher L; Kim Y; Tansey T; Bloom MJ; Ovcharenko I; Michelson AM
    PLoS Genet; 2012; 8(3):e1002531. PubMed ID: 22412381
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Uncoupling evolutionary changes in DNA sequence, transcription factor occupancy and enhancer activity.
    Khoueiry P; Girardot C; Ciglar L; Peng PC; Gustafson EH; Sinha S; Furlong EE
    Elife; 2017 Aug; 6():. PubMed ID: 28792889
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Genome-wide analyses of Shavenbaby target genes reveals distinct features of enhancer organization.
    Menoret D; Santolini M; Fernandes I; Spokony R; Zanet J; Gonzalez I; Latapie Y; Ferrer P; Rouault H; White KP; Besse P; Hakim V; Aerts S; Payre F; Plaza S
    Genome Biol; 2013 Aug; 14(8):R86. PubMed ID: 23972280
    [TBL] [Abstract][Full Text] [Related]  

  • 13. cis-regulatory analysis of the Drosophila pdm locus reveals a diversity of neural enhancers.
    Ross J; Kuzin A; Brody T; Odenwald WF
    BMC Genomics; 2015 Sep; 16(1):700. PubMed ID: 26377945
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantitative-enhancer-FACS-seq (QeFS) reveals epistatic interactions among motifs within transcriptional enhancers in developing Drosophila tissue.
    Waters CT; Gisselbrecht SS; Sytnikova YA; Cafarelli TM; Hill DE; Bulyk ML
    Genome Biol; 2021 Dec; 22(1):348. PubMed ID: 34930411
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Shadow enhancers can suppress input transcription factor noise through distinct regulatory logic.
    Waymack R; Fletcher A; Enciso G; Wunderlich Z
    Elife; 2020 Aug; 9():. PubMed ID: 32804082
    [TBL] [Abstract][Full Text] [Related]  

  • 16. TELS: A Novel Computational Framework for Identifying Motif Signatures of Transcribed Enhancers.
    Kleftogiannis D; Ashoor H; Bajic VB
    Genomics Proteomics Bioinformatics; 2018 Oct; 16(5):332-341. PubMed ID: 30578915
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Systematic dissection of regulatory motifs in 2000 predicted human enhancers using a massively parallel reporter assay.
    Kheradpour P; Ernst J; Melnikov A; Rogov P; Wang L; Zhang X; Alston J; Mikkelsen TS; Kellis M
    Genome Res; 2013 May; 23(5):800-11. PubMed ID: 23512712
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Gene Regulatory Enhancers with Evolutionarily Conserved Activity Are More Pleiotropic than Those with Species-Specific Activity.
    Fish A; Chen L; Capra JA
    Genome Biol Evol; 2017 Oct; 9(10):2615-2625. PubMed ID: 28985297
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transcriptional regulators form diverse groups with context-dependent regulatory functions.
    Stampfel G; Kazmar T; Frank O; Wienerroither S; Reiter F; Stark A
    Nature; 2015 Dec; 528(7580):147-51. PubMed ID: 26550828
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Genome-scale functional characterization of Drosophila developmental enhancers in vivo.
    Kvon EZ; Kazmar T; Stampfel G; Yáñez-Cuna JO; Pagani M; Schernhuber K; Dickson BJ; Stark A
    Nature; 2014 Aug; 512(7512):91-5. PubMed ID: 24896182
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.