These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

281 related articles for article (PubMed ID: 28716420)

  • 41.
    Jiang W; Pan R; Wu C; Xu L; Abdelaziz ME; Oelmüller R; Zhang W
    Plant Signal Behav; 2020 Apr; 15(4):1745472. PubMed ID: 32228382
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Colinearity and similar expression pattern of rice DREB1s reveal their functional conservation in the cold-responsive pathway.
    Mao D; Chen C
    PLoS One; 2012; 7(10):e47275. PubMed ID: 23077584
    [TBL] [Abstract][Full Text] [Related]  

  • 43. A novel Zea mays ssp. mexicana L. MYC-type ICE-like transcription factor gene ZmmICE1, enhances freezing tolerance in transgenic Arabidopsis thaliana.
    Lu X; Yang L; Yu M; Lai J; Wang C; McNeil D; Zhou M; Yang C
    Plant Physiol Biochem; 2017 Apr; 113():78-88. PubMed ID: 28189052
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Rapid transcriptional and metabolic regulation of the deacclimation process in cold acclimated Arabidopsis thaliana.
    Pagter M; Alpers J; Erban A; Kopka J; Zuther E; Hincha DK
    BMC Genomics; 2017 Sep; 18(1):731. PubMed ID: 28915789
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Cytokinin response factor 4 (CRF4) is induced by cold and involved in freezing tolerance.
    Zwack PJ; Compton MA; Adams CI; Rashotte AM
    Plant Cell Rep; 2016 Mar; 35(3):573-84. PubMed ID: 26650835
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Redox-dependent structural switch and CBF activation confer freezing tolerance in plants.
    Lee ES; Park JH; Wi SD; Kang CH; Chi YH; Chae HB; Paeng SK; Ji MG; Kim WY; Kim MG; Yun DJ; Stacey G; Lee SY
    Nat Plants; 2021 Jul; 7(7):914-922. PubMed ID: 34155371
    [TBL] [Abstract][Full Text] [Related]  

  • 47. The cysteine2/histidine2-type transcription factor ZINC FINGER OF ARABIDOPSIS THALIANA 6-activated C-REPEAT-BINDING FACTOR pathway is essential for melatonin-mediated freezing stress resistance in Arabidopsis.
    Shi H; Chan Z
    J Pineal Res; 2014 Sep; 57(2):185-91. PubMed ID: 24962049
    [TBL] [Abstract][Full Text] [Related]  

  • 48. ICE1 Ser403 is necessary for protein stabilization and regulation of cold signaling and tolerance.
    Miura K; Ohta M; Nakazawa M; Ono M; Hasegawa PM
    Plant J; 2011 Jul; 67(2):269-79. PubMed ID: 21447070
    [TBL] [Abstract][Full Text] [Related]  

  • 49. ERF105 is a transcription factor gene of Arabidopsis thaliana required for freezing tolerance and cold acclimation.
    Bolt S; Zuther E; Zintl S; Hincha DK; Schmülling T
    Plant Cell Environ; 2017 Jan; 40(1):108-120. PubMed ID: 27723941
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Lily ASR protein-conferred cold and freezing resistance in Arabidopsis.
    Hsu YF; Yu SC; Yang CY; Wang CS
    Plant Physiol Biochem; 2011 Sep; 49(9):937-45. PubMed ID: 21803593
    [TBL] [Abstract][Full Text] [Related]  

  • 51. The transcription factor ICE1 functions in cold stress response by binding to the promoters of CBF and COR genes.
    Tang K; Zhao L; Ren Y; Yang S; Zhu JK; Zhao C
    J Integr Plant Biol; 2020 Mar; 62(3):258-263. PubMed ID: 32068336
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Natural variation of C-repeat-binding factor (CBFs) genes is a major cause of divergence in freezing tolerance among a group of Arabidopsis thaliana populations along the Yangtze River in China.
    Kang J; Zhang H; Sun T; Shi Y; Wang J; Zhang B; Wang Z; Zhou Y; Gu H
    New Phytol; 2013 Sep; 199(4):1069-1080. PubMed ID: 23721132
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Light-quality regulation of freezing tolerance in Arabidopsis thaliana.
    Franklin KA; Whitelam GC
    Nat Genet; 2007 Nov; 39(11):1410-3. PubMed ID: 17965713
    [TBL] [Abstract][Full Text] [Related]  

  • 54. BRASSINOSTEROID-INSENSITIVE2 Negatively Regulates the Stability of Transcription Factor ICE1 in Response to Cold Stress in Arabidopsis.
    Ye K; Li H; Ding Y; Shi Y; Song C; Gong Z; Yang S
    Plant Cell; 2019 Nov; 31(11):2682-2696. PubMed ID: 31409630
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Transcriptome analysis of responses in Brachypodium distachyon overexpressing the BdbZIP26 transcription factor.
    Martin RC; Kronmiller BA; Dombrowski JE
    BMC Plant Biol; 2020 Apr; 20(1):174. PubMed ID: 32312226
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Natural variation in CBF gene sequence, gene expression and freezing tolerance in the Versailles core collection of Arabidopsis thaliana.
    McKhann HI; Gery C; Bérard A; Lévêque S; Zuther E; Hincha DK; De Mita S; Brunel D; Téoulé E
    BMC Plant Biol; 2008 Oct; 8():105. PubMed ID: 18922165
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Molecular Regulation of CBF Signaling in Cold Acclimation.
    Shi Y; Ding Y; Yang S
    Trends Plant Sci; 2018 Jul; 23(7):623-637. PubMed ID: 29735429
    [TBL] [Abstract][Full Text] [Related]  

  • 58. MPK3- and MPK6-Mediated ICE1 Phosphorylation Negatively Regulates ICE1 Stability and Freezing Tolerance in Arabidopsis.
    Li H; Ding Y; Shi Y; Zhang X; Zhang S; Gong Z; Yang S
    Dev Cell; 2017 Dec; 43(5):630-642.e4. PubMed ID: 29056553
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Genome-scale cold stress response regulatory networks in ten Arabidopsis thaliana ecotypes.
    Barah P; Jayavelu ND; Rasmussen S; Nielsen HB; Mundy J; Bones AM
    BMC Genomics; 2013 Oct; 14():722. PubMed ID: 24148294
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Temporal proteomics of Arabidopsis plasma membrane during cold- and de-acclimation.
    Miki Y; Takahashi D; Kawamura Y; Uemura M
    J Proteomics; 2019 Apr; 197():71-81. PubMed ID: 30447334
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.