These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

283 related articles for article (PubMed ID: 28716420)

  • 61. Genome-scale cold stress response regulatory networks in ten Arabidopsis thaliana ecotypes.
    Barah P; Jayavelu ND; Rasmussen S; Nielsen HB; Mundy J; Bones AM
    BMC Genomics; 2013 Oct; 14():722. PubMed ID: 24148294
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Temporal proteomics of Arabidopsis plasma membrane during cold- and de-acclimation.
    Miki Y; Takahashi D; Kawamura Y; Uemura M
    J Proteomics; 2019 Apr; 197():71-81. PubMed ID: 30447334
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Transcriptomic response of durum wheat to cold stress at reproductive stage.
    Díaz ML; Soresi DS; Basualdo J; Cuppari SJ; Carrera A
    Mol Biol Rep; 2019 Apr; 46(2):2427-2445. PubMed ID: 30798485
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Fitness benefits and costs of cold acclimation in Arabidopsis thaliana.
    Zhen Y; Dhakal P; Ungerer MC
    Am Nat; 2011 Jul; 178(1):44-52. PubMed ID: 21670576
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Disruption mutations of ADA2b and GCN5 transcriptional adaptor genes dramatically affect Arabidopsis growth, development, and gene expression.
    Vlachonasios KE; Thomashow MF; Triezenberg SJ
    Plant Cell; 2003 Mar; 15(3):626-38. PubMed ID: 12615937
    [TBL] [Abstract][Full Text] [Related]  

  • 66. A comparison of the low temperature transcriptomes and CBF regulons of three plant species that differ in freezing tolerance: Solanum commersonii, Solanum tuberosum, and Arabidopsis thaliana.
    Carvallo MA; Pino MT; Jeknic Z; Zou C; Doherty CJ; Shiu SH; Chen TH; Thomashow MF
    J Exp Bot; 2011 Jul; 62(11):3807-19. PubMed ID: 21511909
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Ambient temperature enhanced freezing tolerance of Chrysanthemum dichrum CdICE1 Arabidopsis via miR398.
    Chen Y; Jiang J; Song A; Chen S; Shan H; Luo H; Gu C; Sun J; Zhu L; Fang W; Chen F
    BMC Biol; 2013 Dec; 11():121. PubMed ID: 24350981
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Arabidopsis ESK1 encodes a novel regulator of freezing tolerance.
    Xin Z; Mandaokar A; Chen J; Last RL; Browse J
    Plant J; 2007 Mar; 49(5):786-99. PubMed ID: 17316173
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Roles of the CBF2 and ZAT12 transcription factors in configuring the low temperature transcriptome of Arabidopsis.
    Vogel JT; Zarka DG; Van Buskirk HA; Fowler SG; Thomashow MF
    Plant J; 2005 Jan; 41(2):195-211. PubMed ID: 15634197
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Cold Stress Activates the Expression of Genes of the Chloroplast Transcription Apparatus in Arabidopsis thaliana Plants.
    Bychkov IA; Kudryakova NV; Kuznetsov VV; Kusnetsov VV
    Dokl Biochem Biophys; 2020 Sep; 494(1):235-239. PubMed ID: 33119824
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Defining roles of tandemly arrayed CBF genes in freezing tolerance with new genome editing tools.
    Hua J
    New Phytol; 2016 Oct; 212(2):301-2. PubMed ID: 27641959
    [No Abstract]   [Full Text] [Related]  

  • 72. Physiological and transcriptome analysis of Magnolia denudata leaf buds during long-term cold acclimation.
    Wu K; Duan X; Zhu Z; Sang Z; Duan J; Jia Z; Ma L
    BMC Plant Biol; 2021 Oct; 21(1):460. PubMed ID: 34625030
    [TBL] [Abstract][Full Text] [Related]  

  • 73. The Arabidopsis ethylene overproducer mutant eto1-3 displays enhanced freezing tolerance.
    Catalá R; Salinas J
    Plant Signal Behav; 2015; 10(3):e989768. PubMed ID: 25850018
    [TBL] [Abstract][Full Text] [Related]  

  • 74. ESKIMO1 is a key gene involved in water economy as well as cold acclimation and salt tolerance.
    Bouchabke-Coussa O; Quashie ML; Seoane-Redondo J; Fortabat MN; Gery C; Yu A; Linderme D; Trouverie J; Granier F; Téoulé E; Durand-Tardif M
    BMC Plant Biol; 2008 Dec; 8():125. PubMed ID: 19061521
    [TBL] [Abstract][Full Text] [Related]  

  • 75. CBF2/DREB1C is a negative regulator of CBF1/DREB1B and CBF3/DREB1A expression and plays a central role in stress tolerance in Arabidopsis.
    Novillo F; Alonso JM; Ecker JR; Salinas J
    Proc Natl Acad Sci U S A; 2004 Mar; 101(11):3985-90. PubMed ID: 15004278
    [TBL] [Abstract][Full Text] [Related]  

  • 76. SIZ1-mediated sumoylation of ICE1 controls CBF3/DREB1A expression and freezing tolerance in Arabidopsis.
    Miura K; Jin JB; Lee J; Yoo CY; Stirm V; Miura T; Ashworth EN; Bressan RA; Yun DJ; Hasegawa PM
    Plant Cell; 2007 Apr; 19(4):1403-14. PubMed ID: 17416732
    [TBL] [Abstract][Full Text] [Related]  

  • 77. The calcium transporter ANNEXIN1 mediates cold-induced calcium signaling and freezing tolerance in plants.
    Liu Q; Ding Y; Shi Y; Ma L; Wang Y; Song C; Wilkins KA; Davies JM; Knight H; Knight MR; Gong Z; Guo Y; Yang S
    EMBO J; 2021 Jan; 40(2):e104559. PubMed ID: 33372703
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Overexpression of a wheat MYB transcription factor gene, TaMYB56-B, enhances tolerances to freezing and salt stresses in transgenic Arabidopsis.
    Zhang L; Zhao G; Xia C; Jia J; Liu X; Kong X
    Gene; 2012 Aug; 505(1):100-7. PubMed ID: 22634104
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Plasma Membrane Aquaporin Members PIPs Act in Concert to Regulate Cold Acclimation and Freezing Tolerance Responses in Arabidopsis thaliana.
    Rahman A; Kawamura Y; Maeshima M; Rahman A; Uemura M
    Plant Cell Physiol; 2020 Apr; 61(4):787-802. PubMed ID: 31999343
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Functionality of soybean CBF/DREB1 transcription factors.
    Yamasaki Y; Randall SK
    Plant Sci; 2016 May; 246():80-90. PubMed ID: 26993238
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.