BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

283 related articles for article (PubMed ID: 28716449)

  • 1. Venom-derived peptides inhibiting Kir channels: Past, present, and future.
    Doupnik CA
    Neuropharmacology; 2017 Dec; 127():161-172. PubMed ID: 28716449
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification of
    Doupnik CA
    Toxins (Basel); 2019 Sep; 11(9):. PubMed ID: 31546848
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tertiapin-Q blocks recombinant and native large conductance K+ channels in a use-dependent manner.
    Kanjhan R; Coulson EJ; Adams DJ; Bellingham MC
    J Pharmacol Exp Ther; 2005 Sep; 314(3):1353-61. PubMed ID: 15947038
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Venom-derived peptide inhibitors of voltage-gated potassium channels.
    Norton RS; Chandy KG
    Neuropharmacology; 2017 Dec; 127():124-138. PubMed ID: 28689025
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tertiapin potently and selectively blocks muscarinic K(+) channels in rabbit cardiac myocytes.
    Kitamura H; Yokoyama M; Akita H; Matsushita K; Kurachi Y; Yamada M
    J Pharmacol Exp Ther; 2000 Apr; 293(1):196-205. PubMed ID: 10734170
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A computational design approach for virtual screening of peptide interactions across K(+) channel families.
    Doupnik CA; Parra KC; Guida WC
    Comput Struct Biotechnol J; 2015; 13():85-94. PubMed ID: 25709757
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Autocrine-Based Selection of Drugs That Target Ion Channels from Combinatorial Venom Peptide Libraries.
    Zhang H; Du M; Xie J; Liu X; Sun J; Wang W; Xin X; Possani LD; Yea K; Lerner RA
    Angew Chem Int Ed Engl; 2016 Aug; 55(32):9306-10. PubMed ID: 27197631
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A bifunctional sea anemone peptide with Kunitz type protease and potassium channel inhibiting properties.
    Peigneur S; Billen B; Derua R; Waelkens E; Debaveye S; Béress L; Tytgat J
    Biochem Pharmacol; 2011 Jul; 82(1):81-90. PubMed ID: 21477583
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Unique mechanism of the interaction between honey bee toxin TPNQ and rKir1.1 potassium channel explored by computational simulations: insights into the relative insensitivity of channel towards animal toxins.
    Hu J; Qiu S; Yang F; Cao Z; Li W; Wu Y
    PLoS One; 2013; 8(7):e67213. PubMed ID: 23874410
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Inhibition of 17-beta-estradiol on neuronal excitability via enhancing GIRK1-mediated inwardly rectifying potassium currents and GIRK1 expression.
    Zhang Y; Huang Y; Wang G; Wang X; Wang Y
    J Neurol Sci; 2017 Apr; 375():335-341. PubMed ID: 28320163
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pharmacological screening technologies for venom peptide discovery.
    Prashanth JR; Hasaballah N; Vetter I
    Neuropharmacology; 2017 Dec; 127():4-19. PubMed ID: 28377116
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Computational Studies of Venom Peptides Targeting Potassium Channels.
    Chen R; Chung SH
    Toxins (Basel); 2015 Dec; 7(12):5194-211. PubMed ID: 26633507
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The role of K⁺ conductances in regulating membrane excitability in human gastric corpus smooth muscle.
    Lee JY; Ko EJ; Ahn KD; Kim S; Rhee PL
    Am J Physiol Gastrointest Liver Physiol; 2015 Apr; 308(7):G625-33. PubMed ID: 25591864
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High-throughput screening for small-molecule modulators of inward rectifier potassium channels.
    Raphemot R; Weaver CD; Denton JS
    J Vis Exp; 2013 Jan; (71):. PubMed ID: 23381507
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modelling the interactions between animal venom peptides and membrane proteins.
    Hung A; Kuyucak S; Schroeder CI; Kaas Q
    Neuropharmacology; 2017 Dec; 127():20-31. PubMed ID: 28778835
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Block of voltage-gated calcium channels by peptide toxins.
    Bourinet E; Zamponi GW
    Neuropharmacology; 2017 Dec; 127():109-115. PubMed ID: 27756538
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structure Activity Relationship of Venom Toxins Targeting Potassium Channels.
    Batool S; Noureen N; Kamal MA
    Curr Drug Metab; 2018; 19(8):714-720. PubMed ID: 29283069
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Short variable sequence acquired in evolution enables selective inhibition of various inward-rectifier K+ channels.
    Ramu Y; Klem AM; Lu Z
    Biochemistry; 2004 Aug; 43(33):10701-9. PubMed ID: 15311931
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural Determinants Mediating Tertiapin Block of Neuronal Kir3.2 Channels.
    Patel D; Kuyucak S; Doupnik CA
    Biochemistry; 2020 Feb; 59(7):836-850. PubMed ID: 31990535
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Substitution of a single residue in Stichodactyla helianthus peptide, ShK-Dap22, reveals a novel pharmacological profile.
    Middleton RE; Sanchez M; Linde AR; Bugianesi RM; Dai G; Felix JP; Koprak SL; Staruch MJ; Bruguera M; Cox R; Ghosh A; Hwang J; Jones S; Kohler M; Slaughter RS; McManus OB; Kaczorowski GJ; Garcia ML
    Biochemistry; 2003 Nov; 42(46):13698-707. PubMed ID: 14622016
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.