BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

207 related articles for article (PubMed ID: 28716488)

  • 21. Comparison between donor substrates for biologically enhanced tetrachloroethene DNAPL dissolution.
    Yang Y; McCarty PL
    Environ Sci Technol; 2002 Aug; 36(15):3400-4. PubMed ID: 12188371
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Degradation product partitioning in source zones containing chlorinated ethene dense non-aqueous-phase liquid.
    Ramsburg CA; Thornton CE; Christ JA
    Environ Sci Technol; 2010 Dec; 44(23):9105-11. PubMed ID: 21053958
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Spatial and temporal distributions of Geobacter lovleyi and Dehalococcoides spp. during bioenhanced PCE-NAPL dissolution.
    Amos BK; Suchomel EJ; Pennell KD; Löffler FE
    Environ Sci Technol; 2009 Mar; 43(6):1977-85. PubMed ID: 19368201
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Enhanced reductive dechlorination of tetrachloroethene dense nonaqueous phase liquid with EVO and Mg(OH)2.
    Hiortdahl KM; Borden RC
    Environ Sci Technol; 2014; 48(1):624-31. PubMed ID: 24328264
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Comparison of lactate, formate, and propionate as hydrogen donors for the reductive dehalogenation of trichloroethene in a continuous-flow column.
    Azizian MF; Marshall IP; Behrens S; Spormann AM; Semprini L
    J Contam Hydrol; 2010 Apr; 113(1-4):77-92. PubMed ID: 20202715
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The effects of co-contaminants and native wetland sediments on the activity and dominant transformation mechanisms of a 1,1,2,2-tetrachloroethane (TeCA)-degrading enrichment culture.
    Schiffmacher EN; Becker JG; Lorah MM; Voytek MA
    Chemosphere; 2016 Mar; 147():239-47. PubMed ID: 26766361
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Benzoate-driven dehalogenation of chlorinated ethenes in microbial cultures from a contaminated aquifer.
    Bunge M; Kleikemper J; Miniaci C; Duc L; Muusse MG; Hause G; Zeyer J
    Appl Microbiol Biotechnol; 2007 Oct; 76(6):1447-56. PubMed ID: 17768618
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Multi-method assessment of the intrinsic biodegradation potential of an aquifer contaminated with chlorinated ethenes at an industrial area in Barcelona (Spain).
    Blázquez-Pallí N; Rosell M; Varias J; Bosch M; Soler A; Vicent T; Marco-Urrea E
    Environ Pollut; 2019 Jan; 244():165-173. PubMed ID: 30326388
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Complete reductive dechlorination of tetrachloroethene to ethene by anaerobic microbial enrichment culture developed from sediment.
    Kim BH; Baek KH; Cho DH; Sung Y; Koh SC; Ahn CY; Oh HM; Kim HS
    Biotechnol Lett; 2010 Dec; 32(12):1829-35. PubMed ID: 20714784
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A PCE groundwater plume discharging to a river: influence of the streambed and near-river zone on contaminant distributions.
    Conant B; Cherry JA; Gillham RW
    J Contam Hydrol; 2004 Sep; 73(1-4):249-79. PubMed ID: 15336797
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Enhanced reductive dechlorination in columns treated with edible oil emulsion.
    Long CM; Borden RC
    J Contam Hydrol; 2006 Sep; 87(1-2):54-72. PubMed ID: 16793170
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Reductive dechlorination of carbon tetrachloride and tetrachloroethylene by zerovalent silicon-iron reductants.
    Doong RA; Chen KT; Tsai HC
    Environ Sci Technol; 2003 Jun; 37(11):2575-81. PubMed ID: 12831046
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A highly purified enrichment culture couples the reductive dechlorination of tetrachloroethene to growth.
    Holliger C; Schraa G; Stams AJ; Zehnder AJ
    Appl Environ Microbiol; 1993 Sep; 59(9):2991-7. PubMed ID: 8215370
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Quantifying in situ transformation rates of chlorinated ethenes by combining compound-specific stable isotope analysis, groundwater dating, and carbon isotope mass balances.
    Aeppli C; Hofstetter TB; Amaral HI; Kipfer R; Schwarzenbach RP; Berg M
    Environ Sci Technol; 2010 May; 44(10):3705-11. PubMed ID: 20411982
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Different activity levels of Dehalococcoides mccartyi revealed by FISH and CARD-FISH under non-steady and pseudo-steady state conditions.
    Matturro B; Tandoi V; Rossetti S
    N Biotechnol; 2013 Sep; 30(6):756-62. PubMed ID: 23917146
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Effectiveness of nanoscale zero-valent iron for treatment of a PCE-DNAPL source zone.
    Taghavy A; Costanza J; Pennell KD; Abriola LM
    J Contam Hydrol; 2010 Nov; 118(3-4):128-42. PubMed ID: 20888664
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Reductive biotransformation of tetrachloroethene to ethene during anaerobic degradation of toluene: experimental evidence and kinetics.
    Shen H; Sewell GW
    Environ Sci Technol; 2005 Dec; 39(23):9286-94. PubMed ID: 16382954
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Contrasting regulatory effects of organic acids on aerobic vinyl chloride biodegradation in etheneotrophs.
    Zhao W; Richards PM; Mattes TE
    Appl Microbiol Biotechnol; 2022 Sep; 106(18):6335-6346. PubMed ID: 36056199
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Evaluating the fate of chlorinated ethenes in streambed sediments by combining stable isotope, geochemical and microbial methods.
    Abe Y; Aravena R; Zopfi J; Parker B; Hunkeler D
    J Contam Hydrol; 2009 Jun; 107(1-2):10-21. PubMed ID: 19442407
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Inhibition of aerobic metabolic cis-1,2-di-chloroethene biodegradation by other chloroethenes.
    Zhao HP; Schmidt KR; Tiehm A
    Water Res; 2010 Apr; 44(7):2276-82. PubMed ID: 20079512
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.