BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

312 related articles for article (PubMed ID: 28716624)

  • 1. Recent Advances in Mitochondrial Aminoacyl-tRNA Synthetases and Disease.
    Sissler M; González-Serrano LE; Westhof E
    Trends Mol Med; 2017 Aug; 23(8):693-708. PubMed ID: 28716624
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mitochondrial aminoacyl-tRNA synthetase disorders: an emerging group of developmental disorders of myelination.
    Fine AS; Nemeth CL; Kaufman ML; Fatemi A
    J Neurodev Disord; 2019 Dec; 11(1):29. PubMed ID: 31839000
    [TBL] [Abstract][Full Text] [Related]  

  • 3. When a common biological role does not imply common disease outcomes: Disparate pathology linked to human mitochondrial aminoacyl-tRNA synthetases.
    González-Serrano LE; Chihade JW; Sissler M
    J Biol Chem; 2019 Apr; 294(14):5309-5320. PubMed ID: 30647134
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Role of Mutations of Mitochondrial Aminoacyl-tRNA Synthetases Genes on Epileptogenesis.
    Kong LY; Wu YZ; Cheng RQ; Wang PH; Peng BW
    Mol Neurobiol; 2023 Sep; 60(9):5482-5492. PubMed ID: 37316759
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Human aminoacyl-tRNA synthetases in diseases of the nervous system.
    Ognjenović J; Simonović M
    RNA Biol; 2018; 15(4-5):623-634. PubMed ID: 28534666
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Two proteomic methodologies for defining N-termini of mature human mitochondrial aminoacyl-tRNA synthetases.
    Carapito C; Kuhn L; Karim L; Rompais M; Rabilloud T; Schwenzer H; Sissler M
    Methods; 2017 Jan; 113():111-119. PubMed ID: 27793688
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pathogenic implications of human mitochondrial aminoacyl-tRNA synthetases.
    Schwenzer H; Zoll J; Florentz C; Sissler M
    Top Curr Chem; 2014; 344():247-92. PubMed ID: 23824528
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mutation of the human mitochondrial phenylalanine-tRNA synthetase causes infantile-onset epilepsy and cytochrome c oxidase deficiency.
    Almalki A; Alston CL; Parker A; Simonic I; Mehta SG; He L; Reza M; Oliveira JM; Lightowlers RN; McFarland R; Taylor RW; Chrzanowska-Lightowlers ZM
    Biochim Biophys Acta; 2014 Jan; 1842(1):56-64. PubMed ID: 24161539
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Parallel loss of nuclear-encoded mitochondrial aminoacyl-tRNA synthetases and mtDNA-encoded tRNAs in Cnidaria.
    Haen KM; Pett W; Lavrov DV
    Mol Biol Evol; 2010 Oct; 27(10):2216-9. PubMed ID: 20439315
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Neurodegenerative Charcot-Marie-Tooth disease as a case study to decipher novel functions of aminoacyl-tRNA synthetases.
    Wei N; Zhang Q; Yang XL
    J Biol Chem; 2019 Apr; 294(14):5321-5339. PubMed ID: 30643024
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The role of tRNA synthetases in neurological and neuromuscular disorders.
    Boczonadi V; Jennings MJ; Horvath R
    FEBS Lett; 2018 Mar; 592(5):703-717. PubMed ID: 29288497
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evolutionary and structural annotation of disease-associated mutations in human aminoacyl-tRNA synthetases.
    Datt M; Sharma A
    BMC Genomics; 2014 Dec; 15(1):1063. PubMed ID: 25476837
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Aminoacyl-tRNA synthetases and translational quality control in plant mitochondria.
    Ostersetzer-Biran O; Klipcan L
    Mitochondrion; 2020 Sep; 54():15-20. PubMed ID: 32580010
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quality control of translation through the kinetic discrimination of tRNAs in the network of aminoacyl-tRNA synthetases.
    Shimada N; Matsuzaki K; Suzuki T; Suzuki T; Watanabe K
    Nucleic Acids Res Suppl; 2002; (2):79-80. PubMed ID: 12903114
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Intra-protein compensatory mutations analysis highlights the tRNA recognition regions in aminoacyl-tRNA synthetases.
    Frenkel-Morgenstern M; Tworowski D; Klipcan L; Safro M
    J Biomol Struct Dyn; 2009 Oct; 27(2):115-26. PubMed ID: 19583438
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cytonuclear Interactions in the Evolution of Animal Mitochondrial tRNA Metabolism.
    Pett W; Lavrov DV
    Genome Biol Evol; 2015 Jun; 7(8):2089-101. PubMed ID: 26116918
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Aminoacyl-tRNA Synthetase Evolution within the Dynamic Tripartite Translation System of Plant Cells.
    Sloan DB; DeTar RA; Warren JM
    Genome Biol Evol; 2023 Apr; 15(4):. PubMed ID: 36951086
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Three human aminoacyl-tRNA synthetases have distinct sub-mitochondrial localizations that are unaffected by disease-associated mutations.
    González-Serrano LE; Karim L; Pierre F; Schwenzer H; Rötig A; Munnich A; Sissler M
    J Biol Chem; 2018 Aug; 293(35):13604-13615. PubMed ID: 30006346
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mitochondrial Aminoacyl-tRNA Synthetase and Disease: The Yeast Contribution for Functional Analysis of Novel Variants.
    Figuccia S; Degiorgi A; Ceccatelli Berti C; Baruffini E; Dallabona C; Goffrini P
    Int J Mol Sci; 2021 Apr; 22(9):. PubMed ID: 33926074
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Human mitochondrial tRNA quality control in health and disease: a channelling mechanism?
    Belostotsky R; Frishberg Y; Entelis N
    RNA Biol; 2012 Jan; 9(1):33-9. PubMed ID: 22258151
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.