These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

330 related articles for article (PubMed ID: 28716967)

  • 1. Contextual and Developmental Differences in the Neural Architecture of Cognitive Control.
    Petrican R; Grady CL
    J Neurosci; 2017 Aug; 37(32):7711-7726. PubMed ID: 28716967
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Trajectories of brain system maturation from childhood to older adulthood: Implications for lifespan cognitive functioning.
    Petrican R; Taylor MJ; Grady CL
    Neuroimage; 2017 Dec; 163():125-149. PubMed ID: 28917697
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The intrinsic neural architecture of inhibitory control: The role of development and emotional experience.
    Petrican R; Grady CL
    Neuropsychologia; 2019 Apr; 127():93-105. PubMed ID: 30822448
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Brain-environment alignment during movie watching predicts fluid intelligence and affective function in adulthood.
    Petrican R; Graham KS; Lawrence AD
    Neuroimage; 2021 Sep; 238():118177. PubMed ID: 34020016
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Segregation and Integration of Distinct Brain Networks and Their Relationship to Cognition.
    Cohen JR; D'Esposito M
    J Neurosci; 2016 Nov; 36(48):12083-12094. PubMed ID: 27903719
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of task complexity and age-differences on task-related functional connectivity of attentional networks.
    O'Connell MA; Basak C
    Neuropsychologia; 2018 Jun; 114():50-64. PubMed ID: 29655800
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reconfiguration of Brain Network Architectures between Resting-State and Complexity-Dependent Cognitive Reasoning.
    Hearne LJ; Cocchi L; Zalesky A; Mattingley JB
    J Neurosci; 2017 Aug; 37(35):8399-8411. PubMed ID: 28760864
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Frontoparietal and salience network synchronizations during nonsymbolic magnitude processing predict brain age and mathematical performance in youth.
    Ng CT; Huang PH; Cho YC; Lee PH; Liu YC; Chang TT
    Hum Brain Mapp; 2024 Aug; 45(11):e26777. PubMed ID: 39046114
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Key Brain Network Nodes Show Differential Cognitive Relevance and Developmental Trajectories during Childhood and Adolescence.
    Kolskår KK; Alnæs D; Kaufmann T; Richard G; Sanders AM; Ulrichsen KM; Moberget T; Andreassen OA; Nordvik JE; Westlye LT
    eNeuro; 2018; 5(4):. PubMed ID: 30073200
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dynamic reorganization of the frontal parietal network during cognitive control and episodic memory.
    Ray KL; Ragland JD; MacDonald AW; Gold JM; Silverstein SM; Barch DM; Carter CS
    Cogn Affect Behav Neurosci; 2020 Feb; 20(1):76-90. PubMed ID: 31811557
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Topologically Reorganized Connectivity Architecture of Default-Mode, Executive-Control, and Salience Networks across Working Memory Task Loads.
    Liang X; Zou Q; He Y; Yang Y
    Cereb Cortex; 2016 Apr; 26(4):1501-1511. PubMed ID: 25596593
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Functional connectivity of intrinsic cognitive networks during resting state and task performance in preadolescent children.
    Jiang P; Vuontela V; Tokariev M; Lin H; Aronen ET; Ma Y; Carlson S
    PLoS One; 2018; 13(10):e0205690. PubMed ID: 30332489
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Age differences in functional network reconfiguration with working memory training.
    Iordan AD; Moored KD; Katz B; Cooke KA; Buschkuehl M; Jaeggi SM; Polk TA; Peltier SJ; Jonides J; Reuter-Lorenz PA
    Hum Brain Mapp; 2021 Apr; 42(6):1888-1909. PubMed ID: 33534925
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Risk seeking for losses modulates the functional connectivity of the default mode and left frontoparietal networks in young males.
    Deza Araujo YI; Nebe S; Neukam PT; Pooseh S; Sebold M; Garbusow M; Heinz A; Smolka MN
    Cogn Affect Behav Neurosci; 2018 Jun; 18(3):536-549. PubMed ID: 29616472
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Connectome-based models predict attentional control in aging adults.
    Fountain-Zaragoza S; Samimy S; Rosenberg MD; Prakash RS
    Neuroimage; 2019 Feb; 186():1-13. PubMed ID: 30394324
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development of thalamocortical connectivity during infancy and its cognitive correlations.
    Alcauter S; Lin W; Smith JK; Short SJ; Goldman BD; Reznick JS; Gilmore JH; Gao W
    J Neurosci; 2014 Jul; 34(27):9067-75. PubMed ID: 24990927
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Developmental Maturation of the Precuneus as a Functional Core of the Default Mode Network.
    Li R; Utevsky AV; Huettel SA; Braams BR; Peters S; Crone EA; van Duijvenvoorde ACK
    J Cogn Neurosci; 2019 Oct; 31(10):1506-1519. PubMed ID: 31112473
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dynamics of the Human Structural Connectome Underlying Working Memory Training.
    Caeyenberghs K; Metzler-Baddeley C; Foley S; Jones DK
    J Neurosci; 2016 Apr; 36(14):4056-66. PubMed ID: 27053212
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Using spatial multiple regression to identify intrinsic connectivity networks involved in working memory performance.
    Gordon EM; Stollstorff M; Vaidya CJ
    Hum Brain Mapp; 2012 Jul; 33(7):1536-52. PubMed ID: 21761505
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Working memory load-dependent changes in cortical network connectivity estimated by machine learning.
    Eryilmaz H; Dowling KF; Hughes DE; Rodriguez-Thompson A; Tanner A; Huntington C; Coon WG; Roffman JL
    Neuroimage; 2020 Aug; 217():116895. PubMed ID: 32360929
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.