BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 28717004)

  • 21. Purification and characterization of vanillyl-alcohol oxidase from Penicillium simplicissimum. A novel aromatic alcohol oxidase containing covalently bound FAD.
    de Jong E; van Berkel WJ; van der Zwan RP; de Bont JA
    Eur J Biochem; 1992 Sep; 208(3):651-7. PubMed ID: 1396672
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Discovery of a eugenol oxidase from Rhodococcus sp. strain RHA1.
    Jin J; Mazon H; van den Heuvel RH; Janssen DB; Fraaije MW
    FEBS J; 2007 May; 274(9):2311-21. PubMed ID: 17419730
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Cofactor-dependent assembly of the flavoenzyme vanillyl-alcohol oxidase.
    Tahallah N; Van Den Heuvel RH; Van Den Berg WA; Maier CS; Van Berkel WJ; Heck AJ
    J Biol Chem; 2002 Sep; 277(39):36425-32. PubMed ID: 12107187
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Characterization of Two VAO-Type Flavoprotein Oxidases from Myceliophthora thermophila.
    Ferrari AR; Rozeboom HJ; Vugts ASC; Koetsier MJ; Floor R; Fraaije MW
    Molecules; 2018 Jan; 23(1):. PubMed ID: 29303991
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Tuning of the product spectrum of vanillyl-alcohol oxidase by medium engineering.
    van den Heuvel RH; Partridge J; Laane C; Halling PJ; van Berkel WJ
    FEBS Lett; 2001 Aug; 503(2-3):213-6. PubMed ID: 11513884
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Retention of NADPH-linked quinone reductase activity in an aldo-keto reductase following mutation of the catalytic tyrosine.
    Schlegel BP; Ratnam K; Penning TM
    Biochemistry; 1998 Aug; 37(31):11003-11. PubMed ID: 9692994
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Catalytic mechanism of the oxidative demethylation of 4-(methoxymethyl)phenol by vanillyl-alcohol oxidase. Evidence for formation of a p-quinone methide intermediate.
    Fraaije MW; van Berkel WJ
    J Biol Chem; 1997 Jul; 272(29):18111-6. PubMed ID: 9218444
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The catalytic machinery of the FAD-dependent AtBBE-like protein 15 for alcohol oxidation: Y193 and Y479 form a catalytic base, Q438 and R292 an alkoxide binding site.
    Messenlehner J; Hetman M; Tripp A; Wallner S; Macheroux P; Gruber K; Daniel B
    Arch Biochem Biophys; 2021 Mar; 700():108766. PubMed ID: 33485849
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Biocatalytic Properties and Structural Analysis of Eugenol Oxidase from Rhodococcus jostii RHA1: A Versatile Oxidative Biocatalyst.
    Nguyen QT; de Gonzalo G; Binda C; Rioz-Martínez A; Mattevi A; Fraaije MW
    Chembiochem; 2016 Jul; 17(14):1359-66. PubMed ID: 27123962
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Catalytic function of tyrosine residues in para-hydroxybenzoate hydroxylase as determined by the study of site-directed mutants.
    Entsch B; Palfey BA; Ballou DP; Massey V
    J Biol Chem; 1991 Sep; 266(26):17341-9. PubMed ID: 1910043
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Mechanism of FAD reduction and role of active site residues His-225 and Tyr-259 in Arthrobacter globiformis dimethylglycine oxidase: analysis of mutant structure and catalytic function.
    Basran J; Fullerton S; Leys D; Scrutton NS
    Biochemistry; 2006 Sep; 45(37):11151-61. PubMed ID: 16964976
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Laboratory-evolved vanillyl-alcohol oxidase produces natural vanillin.
    van den Heuvel RH; van den Berg WA; Rovida S; van Berkel WJ
    J Biol Chem; 2004 Aug; 279(32):33492-500. PubMed ID: 15169773
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Conserved tyrosine-369 in the active site of Escherichia coli copper amine oxidase is not essential.
    Murray JM; Kurtis CR; Tambyrajah W; Saysell CG; Wilmot CM; Parsons MR; Phillips SE; Knowles PF; McPherson MJ
    Biochemistry; 2001 Oct; 40(43):12808-18. PubMed ID: 11669617
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Crystallization and preliminary X-ray analysis of the flavoenzyme vanillyl-alcohol oxidase from Penicillium simplicissimum.
    Mattevi A; Fraaije MW; Coda A; van Berkel WJ
    Proteins; 1997 Apr; 27(4):601-3. PubMed ID: 9141139
    [TBL] [Abstract][Full Text] [Related]  

  • 35. On the catalytic role of the conserved active site residue His466 of choline oxidase.
    Ghanem M; Gadda G
    Biochemistry; 2005 Jan; 44(3):893-904. PubMed ID: 15654745
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Regio- and stereospecific conversion of 4-alkylphenols by the covalent flavoprotein vanillyl-alcohol oxidase.
    van den Heuvel RH; Fraaije MW; Laane C; van Berkel WJ
    J Bacteriol; 1998 Nov; 180(21):5646-51. PubMed ID: 9791114
    [TBL] [Abstract][Full Text] [Related]  

  • 37. On the role of histidine 351 in the reaction of alcohol oxidation catalyzed by choline oxidase.
    Rungsrisuriyachai K; Gadda G
    Biochemistry; 2008 Jul; 47(26):6762-9. PubMed ID: 18540638
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Reaction of pyranose dehydrogenase from Agaricus meleagris with its carbohydrate substrates.
    Graf MM; Sucharitakul J; Bren U; Chu DB; Koellensperger G; Hann S; Furtmüller PG; Obinger C; Peterbauer CK; Oostenbrink C; Chaiyen P; Haltrich D
    FEBS J; 2015 Nov; 282(21):4218-41. PubMed ID: 26284701
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Site-directed mutagenesis of selected residues at the active site of aryl-alcohol oxidase, an H2O2-producing ligninolytic enzyme.
    Ferreira P; Ruiz-Dueñas FJ; Martínez MJ; van Berkel WJ; Martínez AT
    FEBS J; 2006 Nov; 273(21):4878-88. PubMed ID: 16999821
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Kinetic mechanism of vanillyl-alcohol oxidase with short-chain 4-alkylphenols.
    Fraaije MW; van den Heuvel RH; Roelofs JC; van Berkel WJ
    Eur J Biochem; 1998 May; 253(3):712-9. PubMed ID: 9654070
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.