These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 28717004)

  • 81. Evidence for proton tunneling and a transient covalent flavin-substrate adduct in choline oxidase S101A.
    Uluisik R; Romero E; Gadda G
    Biochim Biophys Acta Proteins Proteom; 2017 Nov; 1865(11 Pt A):1470-1478. PubMed ID: 28843728
    [TBL] [Abstract][Full Text] [Related]  

  • 82. Molecular cloning, sequencing, and heterologous expression of the vaoA gene from Penicillium simplicissimum CBS 170.90 encoding vanillyl-alcohol oxidase.
    Benen JA; Sánchez-Torres P; Wagemaker MJ; Fraaije MW; van Berkel WJ; Visser J
    J Biol Chem; 1998 Apr; 273(14):7865-72. PubMed ID: 9525880
    [TBL] [Abstract][Full Text] [Related]  

  • 83. Understanding the structural basis for substrate and inhibitor recognition in eukaryotic GH11 xylanases.
    Vardakou M; Dumon C; Murray JW; Christakopoulos P; Weiner DP; Juge N; Lewis RJ; Gilbert HJ; Flint JE
    J Mol Biol; 2008 Feb; 375(5):1293-305. PubMed ID: 18078955
    [TBL] [Abstract][Full Text] [Related]  

  • 84. Catalytic mechanism of short ethoxy chain nonylphenol dehydrogenase belonging to a polyethylene glycol dehydrogenase group in the GMC oxidoreductase family.
    Liu X; Ohta T; Kawabata T; Kawai F
    Int J Mol Sci; 2013 Jan; 14(1):1218-31. PubMed ID: 23306149
    [TBL] [Abstract][Full Text] [Related]  

  • 85. Converting Transaldolase into Aldolase through Swapping of the Multifunctional Acid-Base Catalyst: Common and Divergent Catalytic Principles in F6P Aldolase and Transaldolase.
    Sautner V; Friedrich MM; Lehwess-Litzmann A; Tittmann K
    Biochemistry; 2015 Jul; 54(29):4475-86. PubMed ID: 26131847
    [TBL] [Abstract][Full Text] [Related]  

  • 86. A model of structure and catalysis for ketoreductase domains in modular polyketide synthases.
    Reid R; Piagentini M; Rodriguez E; Ashley G; Viswanathan N; Carney J; Santi DV; Hutchinson CR; McDaniel R
    Biochemistry; 2003 Jan; 42(1):72-9. PubMed ID: 12515540
    [TBL] [Abstract][Full Text] [Related]  

  • 87. Effects of noncovalent and covalent FAD binding on the redox and catalytic properties of p-cresol methylhydroxylase.
    Efimov I; Cronin CN; McIntire WS
    Biochemistry; 2001 Feb; 40(7):2155-66. PubMed ID: 11329284
    [TBL] [Abstract][Full Text] [Related]  

  • 88. Enzymatic versatility and thermostability of a new aryl-alcohol oxidase from Thermothelomyces thermophilus M77.
    Kadowaki MAS; Higasi PMR; de Godoy MO; de Araújo EA; Godoy AS; Prade RA; Polikarpov I
    Biochim Biophys Acta Gen Subj; 2020 Oct; 1864(10):129681. PubMed ID: 32653619
    [TBL] [Abstract][Full Text] [Related]  

  • 89. Formate oxidase, an enzyme of the glucose-methanol-choline oxidoreductase family, has a His-Arg pair and 8-formyl-FAD at the catalytic site.
    Doubayashi D; Ootake T; Maeda Y; Oki M; Tokunaga Y; Sakurai A; Nagaosa Y; Mikami B; Uchida H
    Biosci Biotechnol Biochem; 2011; 75(9):1662-7. PubMed ID: 21897046
    [TBL] [Abstract][Full Text] [Related]  

  • 90. Chemical modification and site-directed mutagenesis of Tyr36 of 3-isopropylmalate dehydrogenase from Thermus thermophilus HB8.
    Miyazaki K; Kadono S; Sakurai M; Moriyama H; Tanaka N; Oshima T
    Protein Eng; 1994 Jan; 7(1):99-102. PubMed ID: 8140100
    [TBL] [Abstract][Full Text] [Related]  

  • 91. Rational modulation of the catalytic activity of A1-1 glutathione S-transferase: evidence for incorporation of an on-face (pi...HO-Ar) hydrogen bond at tyrosine-9.
    Dietze EC; Ibarra C; Dabrowski MJ; Bird A; Atkins WM
    Biochemistry; 1996 Sep; 35(37):11938-44. PubMed ID: 8810897
    [TBL] [Abstract][Full Text] [Related]  

  • 92. Crystal structure of a four-copper laccase complexed with an arylamine: insights into substrate recognition and correlation with kinetics.
    Bertrand T; Jolivalt C; Briozzo P; Caminade E; Joly N; Madzak C; Mougin C
    Biochemistry; 2002 Jun; 41(23):7325-33. PubMed ID: 12044164
    [TBL] [Abstract][Full Text] [Related]  

  • 93. The VAO/PCMH flavoprotein family.
    Ewing TA; Fraaije MW; Mattevi A; van Berkel WJH
    Arch Biochem Biophys; 2017 Oct; 632():104-117. PubMed ID: 28669855
    [TBL] [Abstract][Full Text] [Related]  

  • 94. Kinetic and structural evaluation of selected active site mutants of the Aspergillus fumigatus KDNase (sialidase).
    Yeung JH; Telford JC; Shidmoossavee FS; Bennet AJ; Taylor GL; Moore MM
    Biochemistry; 2013 Dec; 52(51):9177-86. PubMed ID: 24295366
    [TBL] [Abstract][Full Text] [Related]  

  • 95. Active site and loop 4 movements within human glycolate oxidase: implications for substrate specificity and drug design.
    Murray MS; Holmes RP; Lowther WT
    Biochemistry; 2008 Feb; 47(8):2439-49. PubMed ID: 18215067
    [TBL] [Abstract][Full Text] [Related]  

  • 96. Predicting the substrate specificity of a glycosyltransferase implicated in the production of phenolic volatiles in tomato fruit.
    Louveau T; Leitao C; Green S; Hamiaux C; van der Rest B; Dechy-Cabaret O; Atkinson RG; Chervin C
    FEBS J; 2011 Jan; 278(2):390-400. PubMed ID: 21166996
    [TBL] [Abstract][Full Text] [Related]  

  • 97. Enantioselective oxidation of secondary alcohols by the flavoprotein alcohol oxidase from Phanerochaete chrysosporium.
    Tjallinks G; Martin C; Fraaije MW
    Arch Biochem Biophys; 2021 Jun; 704():108888. PubMed ID: 33910055
    [TBL] [Abstract][Full Text] [Related]  

  • 98. Identification of a gatekeeper residue that prevents dehydrogenases from acting as oxidases.
    Leferink NG; Fraaije MW; Joosten HJ; Schaap PJ; Mattevi A; van Berkel WJ
    J Biol Chem; 2009 Feb; 284(7):4392-7. PubMed ID: 19088070
    [TBL] [Abstract][Full Text] [Related]  

  • 99. Oxidation of Monolignols by Members of the Berberine Bridge Enzyme Family Suggests a Role in Plant Cell Wall Metabolism.
    Daniel B; Pavkov-Keller T; Steiner B; Dordic A; Gutmann A; Nidetzky B; Sensen CW; van der Graaff E; Wallner S; Gruber K; Macheroux P
    J Biol Chem; 2015 Jul; 290(30):18770-81. PubMed ID: 26037923
    [TBL] [Abstract][Full Text] [Related]  

  • 100. Inhibitory Potential of New Phenolic Hydrazide-Hydrazones with a Decoy Substrate Fragment towards Laccase from a Phytopathogenic Fungus: SAR and Molecular Docking Studies.
    Maniak H; Talma M; Giurg M
    Int J Mol Sci; 2021 Nov; 22(22):. PubMed ID: 34830189
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.