These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

217 related articles for article (PubMed ID: 2871713)

  • 81. Biomechanical evaluation of interfragmentary compression at tibia plateau fractures in vitro using different fixation techniques: a CONSORT-compliant article.
    Kojima K; Gueorguiev B; Seva G; Stoffel K; de Oliveira RG; Eberli U; Nicolino T; Lenz M
    Medicine (Baltimore); 2015 Jan; 94(1):e282. PubMed ID: 25569643
    [TBL] [Abstract][Full Text] [Related]  

  • 82. Plating System Design Determines Mechanical Environment in Long Bone Mid-shaft Fractures: A Finite Element Analysis.
    Wang J; Zhang X; Li S; Yin B; Liu G; Cheng X; Zhang Y
    J Invest Surg; 2020 Sep; 33(8):699-708. PubMed ID: 30885085
    [No Abstract]   [Full Text] [Related]  

  • 83. [Fixation of fragments following middle-face fractures using traction screws and plate-osteosyntheses].
    Schargus G; Schröder F
    Fortschr Kiefer Gesichtschir; 1977; 22():51-3. PubMed ID: 272347
    [No Abstract]   [Full Text] [Related]  

  • 84. ["Tension band"-osteosynthesis (author's transl)].
    Ansorge D
    Zentralbl Chir; 1978; 103(7):420-31. PubMed ID: 664950
    [TBL] [Abstract][Full Text] [Related]  

  • 85. [Dynamic study of miniplates by finite element method].
    Sakai T
    Shikwa Gakuho; 1989 Mar; 89(3):511-59. PubMed ID: 2626689
    [TBL] [Abstract][Full Text] [Related]  

  • 86. [Deformation stability of plate and composite osteosyntheses of the femoral shaft].
    Lintner P; Burri C; Hutzschenreuter P; Rüter A; Stemann HJ
    Helv Chir Acta; 1976 Dec; 43(5-6):759-63. PubMed ID: 1002541
    [No Abstract]   [Full Text] [Related]  

  • 87. Risk of vascular injury at the proximal tibia for medial narrow locking plate fixation: an anatomical study using CT angiogram.
    Rugpolmuang L; Taweebanjongsin T; Riansuwan K
    J Med Assoc Thai; 2014 Sep; 97 Suppl 9():S121-6. PubMed ID: 25365904
    [TBL] [Abstract][Full Text] [Related]  

  • 88. Biomechanical comparison of screw osteosyntheses and anatomical plating for coronoid shear fractures of the ulna.
    Rausch V; Jettkant B; Lotzien S; Rosteius T; Mempel E; Schildhauer TA; Seybold D; Geßmann J; Königshausen M
    Arch Orthop Trauma Surg; 2021 Sep; 141(9):1509-1515. PubMed ID: 33044707
    [TBL] [Abstract][Full Text] [Related]  

  • 89. [Spongiosa formation in plate osteosynthesis--a comparative animal experiment study of current and auto-compression plates using the Zespol principle].
    Hopf T; Mittelmeier W; Mittelmeier H
    Aktuelle Traumatol; 1989 Apr; 19(2):65-72. PubMed ID: 2565660
    [TBL] [Abstract][Full Text] [Related]  

  • 90. [An experimental study on bone potentials at fracture site with axial interfragmental gradient compression].
    Zhang Y; Liu L; Shu S; Li Z; Zhong G
    Hua Xi Kou Qiang Yi Xue Za Zhi; 1999 Feb; 17(1):20-2. PubMed ID: 12539313
    [TBL] [Abstract][Full Text] [Related]  

  • 91. [Biomechanical studies on various methods of osteosynthesis on a photoelastic model of the mandible].
    Sonnenburg M; Härtel J
    Stomatol DDR; 1978 Feb; 28(2):83-91. PubMed ID: 274835
    [TBL] [Abstract][Full Text] [Related]  

  • 92. Reverse oblique end screws in nonlocking plates decrease construct strength in synthetic osteoporotic bone medium.
    Charpentier PM; Flanagan BP; Srivastava AK; Atkinson PJ
    J Surg Orthop Adv; 2015; 24(2):130-6. PubMed ID: 25988696
    [TBL] [Abstract][Full Text] [Related]  

  • 93. Biomechanical effects of screw orientation and plate profile on tibial condylar valgus osteotomy - Finite-element analysis.
    Cheng CT; Luo CA; Chen YC
    Comput Methods Biomech Biomed Engin; 2020 Sep; 23(12):906-913. PubMed ID: 32478579
    [TBL] [Abstract][Full Text] [Related]  

  • 94. [Regeneration of bone tissue of the diaphysis under different conditions of experimental traction osteosynthesis].
    Lediaev VI
    Eksp Khir Anesteziol; 1975; (2):42-9. PubMed ID: 1183378
    [No Abstract]   [Full Text] [Related]  

  • 95. [Contact surfaces, compressive forces and pressure distribution in osteosynthesis. Model studies using pressure-sensitive foil].
    Hehne HJ; Soltész U; Desiderato R
    Z Orthop Ihre Grenzgeb; 1985; 123(1):27-34. PubMed ID: 3984465
    [TBL] [Abstract][Full Text] [Related]  

  • 96. [Metal plate osteosynthesis and wire osteosynthesis for the treatment of periorbital fractures in an experimental study].
    Ewers R; Schilli W
    Dtsch Zahnarztl Z; 1977 Oct; 32(10):820-3. PubMed ID: 269797
    [TBL] [Abstract][Full Text] [Related]  

  • 97. [Elastic plate osteosynthesis, biomechanics, indications and technique in comparison with rigid osteosynthesis].
    Stürmer KM
    Unfallchirurg; 1996 Nov; 99(11):816-29. PubMed ID: 9036547
    [TBL] [Abstract][Full Text] [Related]  

  • 98. Tibial shaft fractures. The frequency of local complications in tibial shaft fractures treated by internal compression osteosynthesis.
    Kristensen KD
    Acta Orthop Scand; 1979 Oct; 50(5):593-8. PubMed ID: 525327
    [TBL] [Abstract][Full Text] [Related]  

  • 99. Effect of plate position relative to bending direction on the rigidity of a plate osteosynthesis. A theoretical analysis.
    Gautier E; Perren SM; Cordey J
    Injury; 2000 Sep; 31 Suppl 3():C14-20. PubMed ID: 11052376
    [TBL] [Abstract][Full Text] [Related]  

  • 100. [Is it possible to treat a tibial torsion fracture in a stress-stable fashion? An experimental contribution].
    Johner R; Pohler O
    Helv Chir Acta; 1976 Dec; 43(5-6):735-8. PubMed ID: 1002538
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.