These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 28717463)

  • 1. Cyclo-oligomerization of isocyanates with Na(PH
    Heift D; Benkő Z; Grützmacher H; Jupp AR; Goicoechea JM
    Chem Sci; 2015 Jul; 6(7):4017-4024. PubMed ID: 28717463
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Chemistry of the 2-Phosphaethynolate Anion.
    Goicoechea JM; Grützmacher H
    Angew Chem Int Ed Engl; 2018 Dec; 57(52):16968-16994. PubMed ID: 29770548
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The reactivity of acyl chlorides towards sodium phosphaethynolate, Na(OCP): a mechanistic case study.
    Heift D; Benkő Z; Suter R; Verel R; Grützmacher H
    Chem Sci; 2016 Sep; 7(9):6125-6131. PubMed ID: 30034752
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Coulomb repulsion versus cycloaddition: formation of anionic four-membered rings from sodium phosphaethynolate, Na(OCP).
    Heift D; Benkő Z; Grützmacher H
    Dalton Trans; 2014 Jan; 43(2):831-40. PubMed ID: 24153381
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synthesis of anionic phosphorus-containing heterocycles by intramolecular cyclizations involving N-functionalized phosphinecarboxamides.
    Robinson TP; Goicoechea JM
    Chemistry; 2015 Apr; 21(15):5727-31. PubMed ID: 25736217
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The 2-Arsaethynolate Anion: Synthesis and Reactivity Towards Heteroallenes.
    Hinz A; Goicoechea JM
    Angew Chem Int Ed Engl; 2016 Jul; 55(30):8536-41. PubMed ID: 27093942
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Palladium(0)-catalyzed trimerization of arylisocyanates into 1,3,5-triarylisocyanurates in the presence of diimines: a nonintuitive mechanism.
    Paul F; Moulin S; Piechaczyk O; Le Floch P; Osborn JA
    J Am Chem Soc; 2007 Jun; 129(23):7294-304. PubMed ID: 17508745
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Role of Acetate Anions in the Catalytic Formation of Isocyanurates from Aromatic Isocyanates.
    Guo Y; Muuronen M; Deglmann P; Lucas F; Sijbesma RP; Tomović Ž
    J Org Chem; 2021 Apr; 86(8):5651-5659. PubMed ID: 33793239
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sodium phosphaethynolate as a building block for heterocycles.
    Chen X; Alidori S; Puschmann FF; Santiso-Quinones G; Benkő Z; Li Z; Becker G; Grützmacher HF; Grützmacher H
    Angew Chem Int Ed Engl; 2014 Feb; 53(6):1641-5. PubMed ID: 24453139
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Insertion of sodium phosphaethynolate, Na[OCP], into a zirconium-benzyne complex.
    Kieser JM; Gilliard RJ; Rheingold AL; Grützmacher H; Protasiewicz JD
    Chem Commun (Camb); 2017 May; 53(37):5110-5112. PubMed ID: 28430281
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The "Hidden" Reductive [2+2+1]-Cycloaddition Chemistry of 2-Phosphaethynolate Revealed by Reduction of a Th-OCP Linkage.
    Du J; Balázs G; Wooles AJ; Scheer M; Liddle ST
    Angew Chem Int Ed Engl; 2021 Jan; 60(3):1197-1202. PubMed ID: 33051949
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Recent advances in the chemistry of the phosphaethynolate and arsaethynolate anions.
    Basappa S; Bhawar R; Nagaraju DH; Bose SK
    Dalton Trans; 2022 Mar; 51(10):3778-3806. PubMed ID: 35108724
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The 2-phosphaethynolate anion: a convenient synthesis and [2+2] cycloaddition chemistry.
    Jupp AR; Goicoechea JM
    Angew Chem Int Ed Engl; 2013 Sep; 52(38):10064-7. PubMed ID: 23913436
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Thermal stabilities and conformational behaviors of isocyanurates and cyclotrimerization energies of isocyanates: a computational study.
    Uchimaru T; Yamane S; Mizukado J; Tsuzuki S
    RSC Adv; 2020 Apr; 10(27):15955-15965. PubMed ID: 35493671
    [TBL] [Abstract][Full Text] [Related]  

  • 15. 1,4,2-Diazaphospholidine-3,5-diones and related compounds: a lecture on unpredictability in catalysis.
    Richter FU
    Chemistry; 2009; 15(21):5200-2. PubMed ID: 19347897
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Diverse Bonding Activations in the Reactivity of a Pentaphenylborole toward Sodium Phosphaethynolate: Heterocycle Synthesis and Mechanistic Studies.
    Li Y; Siwatch RK; Mondal T; Li Y; Ganguly R; Koley D; So CW
    Inorg Chem; 2017 Apr; 56(7):4112-4120. PubMed ID: 28322546
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Convenient Synthesis of 1,2,4- and 1,3,4-Azadiphospholes.
    Suter R; Benkő Z; Grützmacher H
    Chemistry; 2016 Oct; 22(42):14979-14987. PubMed ID: 27576588
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Redox-triggered reversible interconversion of a monocyclic and a bicyclic phosphorus heterocycle.
    Heift D; Benkő Z; Grützmacher H
    Angew Chem Int Ed Engl; 2014 Jun; 53(26):6757-61. PubMed ID: 24842005
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Thermally Stable Magnesium Phosphaethynolate Grignard Complex.
    Obi AD; Machost HR; Dickie DA; Gilliard RJ
    Inorg Chem; 2021 Aug; 60(16):12481-12488. PubMed ID: 34346670
    [TBL] [Abstract][Full Text] [Related]  

  • 20. White phosphorus activation at a metal-phosphorus triple bond: a new route to cyclo-triphosphorus or cyclo-pentaphosphorus complexes of niobium.
    Tofan D; Cossairt BM; Cummins CC
    Inorg Chem; 2011 Dec; 50(24):12349-58. PubMed ID: 21894967
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.