These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 28717472)

  • 1. Photoanodic and photocathodic behaviour of La
    Ma G; Suzuki Y; Singh RB; Iwanaga A; Moriya Y; Minegishi T; Liu J; Hisatomi T; Nishiyama H; Katayama M; Seki K; Furube A; Yamada T; Domen K
    Chem Sci; 2015 Aug; 6(8):4513-4518. PubMed ID: 28717472
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enhancement of Charge Separation and Hydrogen Evolution on Particulate La
    Liu J; Hisatomi T; Murthy DH; Zhong M; Nakabayashi M; Higashi T; Suzuki Y; Matsuzaki H; Seki K; Furube A; Shibata N; Katayama M; Minegishi T; Domen K
    J Phys Chem Lett; 2017 Jan; 8(2):375-379. PubMed ID: 28033010
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Self-biasing photoelectrochemical cell for spontaneous overall water splitting under visible-light illumination.
    Chen Q; Li J; Li X; Huang K; Zhou B; Shangguan W
    ChemSusChem; 2013 Jul; 6(7):1276-81. PubMed ID: 23775929
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Recent Advances in Visible-Light-Driven Photoelectrochemical Water Splitting: Catalyst Nanostructures and Reaction Systems.
    Chen X; Zhang Z; Chi L; Nair AK; Shangguan W; Jiang Z
    Nanomicro Lett; 2016; 8(1):1-12. PubMed ID: 30464988
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bismuth Vanadate Photoelectrodes with High Photovoltage as Photoanode and Photocathode in Photoelectrochemical Cells for Water Splitting.
    Dos Santos WS; Rodriguez M; Khoury JMO; Nascimento LA; Ribeiro RJP; Mesquita JP; Silva AC; Nogueira FGE; Pereira MC
    ChemSusChem; 2018 Feb; 11(3):589-597. PubMed ID: 29193761
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interfacial Coupling Effect on Electron Transport in Hierarchical TaON/Au/ZnCo-LDH Photoanode with Enhanced Photoelectrochemical Water Oxidation.
    Wang H; Xia Y; Wang X; Han Y; Jiao X; Chen D
    ACS Appl Mater Interfaces; 2019 Sep; 11(36):33062-33073. PubMed ID: 31419108
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enhanced Photoelectrochemical Water Oxidation from CdTe Photoanodes Annealed with CdCl
    Su J; Hisatomi T; Minegishi T; Domen K
    Angew Chem Int Ed Engl; 2020 Aug; 59(33):13800-13806. PubMed ID: 32394584
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Suppression of poisoning of photocathode catalysts in photoelectrochemical cells for highly stable sunlight-driven overall water splitting.
    Kaneko H; Minegishi T; Kobayashi H; Kuang Y; Domen K
    J Chem Phys; 2019 Jan; 150(4):041713. PubMed ID: 30709278
    [TBL] [Abstract][Full Text] [Related]  

  • 9. InGaAsP as a Promising Narrow Band Gap Semiconductor for Photoelectrochemical Water Splitting.
    Butson JD; Narangari PR; Lysevych M; Wong-Leung J; Wan Y; Karuturi SK; Tan HH; Jagadish C
    ACS Appl Mater Interfaces; 2019 Jul; 11(28):25236-25242. PubMed ID: 31265227
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Advancing the Chemistry of CuWO4 for Photoelectrochemical Water Oxidation.
    Lhermitte CR; Bartlett BM
    Acc Chem Res; 2016 Jun; 49(6):1121-9. PubMed ID: 27227377
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Exploratory Study of Zn
    Lin H; Long X; Hu J; Qiu Y; Wang Z; Ma M; An Y; Yang S
    ACS Appl Mater Interfaces; 2018 Apr; 10(13):10918-10926. PubMed ID: 29578676
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cu
    Ikeda S; Aono N; Iwase A; Kobayashi H; Kudo A
    ChemSusChem; 2019 May; 12(9):1977-1983. PubMed ID: 30666792
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Studies on the substrate-dependent photocatalytic properties of Cu
    Khasanah RAN; Lin HC; Ho HY; Peng YP; Lim TS; Hsiao HL; Wang CR; Chuang MC; Chien FS
    RSC Adv; 2021 Jan; 11(9):4935-4941. PubMed ID: 35424443
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Site-selective photodeposition of Pt on a particulate Sc-La5Ti2CuS5O7 photocathode: evidence for one-dimensional charge transfer.
    Ma G; Liu J; Hisatomi T; Minegishi T; Moriya Y; Iwase M; Nishiyama H; Katayama M; Yamada T; Domen K
    Chem Commun (Camb); 2015 Mar; 51(20):4302-5. PubMed ID: 25673323
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhanced Solar Water Splitting by Swift Charge Separation in Au/FeOOH Sandwiched Single-Crystalline Fe
    Wang L; Nguyen NT; Zhang Y; Bi Y; Schmuki P
    ChemSusChem; 2017 Jul; 10(13):2720-2727. PubMed ID: 28437588
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Utilization of Metal Sulfide Material of (CuGa)(1-x)Zn(2x)S2 Solid Solution with Visible Light Response in Photocatalytic and Photoelectrochemical Solar Water Splitting Systems.
    Kato T; Hakari Y; Ikeda S; Jia Q; Iwase A; Kudo A
    J Phys Chem Lett; 2015 Mar; 6(6):1042-7. PubMed ID: 26262867
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Direct Z scheme-fashioned photoanode systems consisting of Fe
    Liao A; Zhou Y; Xiao L; Zhang C; Wu C; Asiri AM; Xiao M; Zou Z
    Nanoscale; 2018 Dec; 11(1):109-114. PubMed ID: 30534720
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Designing WO
    Wang Y; Chen C; Tian W; Xu W; Li L
    Nanotechnology; 2019 Dec; 30(49):495402. PubMed ID: 31476749
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Back electron-hole recombination in hematite photoanodes for water splitting.
    Le Formal F; Pendlebury SR; Cornuz M; Tilley SD; Grätzel M; Durrant JR
    J Am Chem Soc; 2014 Feb; 136(6):2564-74. PubMed ID: 24437340
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dendritic Au/TiO₂ nanorod arrays for visible-light driven photoelectrochemical water splitting.
    Su F; Wang T; Lv R; Zhang J; Zhang P; Lu J; Gong J
    Nanoscale; 2013 Oct; 5(19):9001-9. PubMed ID: 23864159
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.