These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
317 related articles for article (PubMed ID: 28717565)
1. Twenty-five years of optical coherence tomography: the paradigm shift in sensitivity and speed provided by Fourier domain OCT [Invited]. de Boer JF; Leitgeb R; Wojtkowski M Biomed Opt Express; 2017 Jul; 8(7):3248-3280. PubMed ID: 28717565 [TBL] [Abstract][Full Text] [Related]
2. Optical Coherence Tomography for Ophthalmology Imaging. Qin J; An L Adv Exp Med Biol; 2021; 3233():197-216. PubMed ID: 34053029 [TBL] [Abstract][Full Text] [Related]
3. Clinical utility of anterior segment swept-source optical coherence tomography in glaucoma. Angmo D; Nongpiur ME; Sharma R; Sidhu T; Sihota R; Dada T Oman J Ophthalmol; 2016; 9(1):3-10. PubMed ID: 27013821 [TBL] [Abstract][Full Text] [Related]
4. Features of age-related macular degeneration assessed with three-dimensional Fourier-domain optical coherence tomography. Menke MN; Dabov S; Sturm V Br J Ophthalmol; 2008 Nov; 92(11):1492-7. PubMed ID: 18703554 [TBL] [Abstract][Full Text] [Related]
5. Sensitivity advantage of swept source and Fourier domain optical coherence tomography. Choma M; Sarunic M; Yang C; Izatt J Opt Express; 2003 Sep; 11(18):2183-9. PubMed ID: 19466106 [TBL] [Abstract][Full Text] [Related]
6. En face optical coherence tomography: a technology review [Invited]. Leitgeb RA Biomed Opt Express; 2019 May; 10(5):2177-2201. PubMed ID: 31143489 [TBL] [Abstract][Full Text] [Related]
8. High-definition and 3-dimensional imaging of macular pathologies with high-speed ultrahigh-resolution optical coherence tomography. Srinivasan VJ; Wojtkowski M; Witkin AJ; Duker JS; Ko TH; Carvalho M; Schuman JS; Kowalczyk A; Fujimoto JG Ophthalmology; 2006 Nov; 113(11):2054.e1-14. PubMed ID: 17074565 [TBL] [Abstract][Full Text] [Related]
9. Ultrahigh-resolution, high-speed, Fourier domain optical coherence tomography and methods for dispersion compensation. Wojtkowski M; Srinivasan V; Ko T; Fujimoto J; Kowalczyk A; Duker J Opt Express; 2004 May; 12(11):2404-22. PubMed ID: 19475077 [TBL] [Abstract][Full Text] [Related]
10. Key Developments for Partial Coherence Biometry and Optical Coherence Tomography in the Human Eye Made in Vienna. Hitzenberger CK; Drexler W; Leitgeb RA; Findl O; Fercher AF Invest Ophthalmol Vis Sci; 2016 Jul; 57(9):OCT460-74. PubMed ID: 27409506 [TBL] [Abstract][Full Text] [Related]
11. High-speed OCT light sources and systems [Invited]. Klein T; Huber R Biomed Opt Express; 2017 Feb; 8(2):828-859. PubMed ID: 28270988 [TBL] [Abstract][Full Text] [Related]
12. High precision dynamic multi-interface profilometry with optical coherence tomography. Lawman S; Liang H Appl Opt; 2011 Nov; 50(32):6039-48. PubMed ID: 22083374 [TBL] [Abstract][Full Text] [Related]
13. Ultra-high speed and ultra-high resolution spectral-domain optical coherence tomography and optical Doppler tomography in ophthalmology. Cense B; Chen TC; Nassif N; Pierce MC; Yun SH; Park BH; Bouma BE; Tearney GJ; de Boer JF Bull Soc Belge Ophtalmol; 2006; (302):123-32. PubMed ID: 17265794 [TBL] [Abstract][Full Text] [Related]
19. The ecosystem that powered the translation of OCT from fundamental research to clinical and commercial impact [Invited]. Swanson EA; Fujimoto JG Biomed Opt Express; 2017 Mar; 8(3):1638-1664. PubMed ID: 28663854 [TBL] [Abstract][Full Text] [Related]
20. Spectral domain optical coherence tomography: a better OCT imaging strategy. Yaqoob Z; Wu J; Yang C Biotechniques; 2005 Dec; 39(6 Suppl):S6-13. PubMed ID: 20158503 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]