These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
287 related articles for article (PubMed ID: 28717650)
1. Removal of Cu, Zn, Pb, and Cr from Yangtze Estuary Using the Huang X; Zhao F; Yu G; Song C; Geng Z; Zhuang P Biomed Res Int; 2017; 2017():6201048. PubMed ID: 28717650 [TBL] [Abstract][Full Text] [Related]
2. Long-term (two annual cycles) phytoremediation of heavy metal-contaminated estuarine sediments by Phragmites australis. Cicero-Fernández D; Peña-Fernández M; Expósito-Camargo JA; Antizar-Ladislao B N Biotechnol; 2017 Sep; 38(Pt B):56-64. PubMed ID: 27449529 [TBL] [Abstract][Full Text] [Related]
3. Influence of Spartina alterniflora on the mobility of heavy metals in salt marsh sediments of the Yangtze River Estuary, China. Wang Y; Zhou L; Zheng X; Qian P; Wu Y Environ Sci Pollut Res Int; 2013 Mar; 20(3):1675-85. PubMed ID: 22821343 [TBL] [Abstract][Full Text] [Related]
4. Wetland plants as indicators of heavy metal contamination. Phillips DP; Human LRD; Adams JB Mar Pollut Bull; 2015 Mar; 92(1-2):227-232. PubMed ID: 25599629 [TBL] [Abstract][Full Text] [Related]
5. A comparison of trace metal bioaccumulation and distribution in Typha latifolia and Phragmites australis: implication for phytoremediation. Klink A Environ Sci Pollut Res Int; 2017 Feb; 24(4):3843-3852. PubMed ID: 27900625 [TBL] [Abstract][Full Text] [Related]
6. Heavy metal bioaccumulation by Miscanthus sacchariflorus and its potential for removing metals from the Dongting Lake wetlands, China. Yao X; Niu Y; Li Y; Zou D; Ding X; Bian H Environ Sci Pollut Res Int; 2018 Jul; 25(20):20003-20011. PubMed ID: 29744779 [TBL] [Abstract][Full Text] [Related]
7. Metal uptake capability of Cyperus articulatus L. and its role in mitigating heavy metals from contaminated wetlands. Galal TM; Gharib FA; Ghazi SM; Mansour KH Environ Sci Pollut Res Int; 2017 Sep; 24(27):21636-21648. PubMed ID: 28752307 [TBL] [Abstract][Full Text] [Related]
8. Effects of sediment burial disturbance on macro and microelement dynamics in decomposing litter of Phragmites australis in the coastal marsh of the Yellow River estuary, China. Sun Z; Mou X Environ Sci Pollut Res Int; 2016 Mar; 23(6):5189-202. PubMed ID: 26555885 [TBL] [Abstract][Full Text] [Related]
9. Phytoremediation of Cd, Cr, Cu, Mn, Fe, Ni, Pb and Zn from aqueous solution using Phragmites cummunis, Typha angustifolia and Cyperus esculentus. Chandra R; Yadav S Int J Phytoremediation; 2011 Jul; 13(6):580-91. PubMed ID: 21972504 [TBL] [Abstract][Full Text] [Related]
10. Heavy metals in wetland plants and soil of Lake Taihu, China. Yang H; Shen Z; Zhu S; Wang W Environ Toxicol Chem; 2008 Jan; 27(1):38-42. PubMed ID: 18092866 [TBL] [Abstract][Full Text] [Related]
11. Decomposition and heavy metal variations of the typical halophyte litters in coastal marshes of the Yellow River estuary, China. Sun Z; Mou X; Sun W Chemosphere; 2016 Mar; 147():163-72. PubMed ID: 26766352 [TBL] [Abstract][Full Text] [Related]
12. Uptake and distribution of N, P and heavy metals in three dominant salt marsh macrophytes from Yangtze River estuary, China. Quan WM; Han JD; Shen AL; Ping XY; Qian PL; Li CJ; Shi LY; Chen YQ Mar Environ Res; 2007 Jul; 64(1):21-37. PubMed ID: 17306362 [TBL] [Abstract][Full Text] [Related]
13. Phytoremediation potential of Phragmites australis in Hokersar wetland - a Ramsar site of Kashmir Himalaya. Ahmad SS; Reshi ZA; Shah MA; Rashid I; Ara R; Andrabi SM Int J Phytoremediation; 2014; 16(7-12):1183-91. PubMed ID: 24933910 [TBL] [Abstract][Full Text] [Related]
14. Role of Phragmites australis (common reed) for heavy metals phytoremediation of estuarine sediments. Cicero-Fernández D; Peña-Fernández M; Expósito-Camargo JA; Antizar-Ladislao B Int J Phytoremediation; 2016; 18(6):575-82. PubMed ID: 26375048 [TBL] [Abstract][Full Text] [Related]
15. Seasonal variations of some heavy metals in common reed (Phragmites australis (Cav.) Trin. Ex. Steudel) and narrow-leaved cattail (Typha angustifolia L.) in Eğirdir Lake (Turkey) and the possibility of using for phytoremediation of these macrophytes. Özçelik Ş; Tekin-Özan S Environ Sci Pollut Res Int; 2023 Nov; 30(52):112194-112205. PubMed ID: 37831255 [TBL] [Abstract][Full Text] [Related]
16. Accumulation of heavy metals in a macrophyte Phragmites australis: implications to phytoremediation in the Arabian Peninsula wadis. Al-Homaidan AA; Al-Otaibi TG; El-Sheikh MA; Al-Ghanayem AA; Ameen F Environ Monit Assess; 2020 Feb; 192(3):202. PubMed ID: 32107648 [TBL] [Abstract][Full Text] [Related]
17. Effects of spatial expansion between Phragmites australis and Cyperus malaccensis on variations of arsenic and heavy metals in decomposing litters in a typical subtropical estuary (Min River), China. Li X; Sun Z; Tian L; He T; Li J; Wang J; Wang H; Chen B Chemosphere; 2020 Feb; 240():124965. PubMed ID: 31726610 [TBL] [Abstract][Full Text] [Related]
18. Temporal variations and bioaccumulation of heavy metals in different Suaeda salsa marshes of the Yellow River estuary, China. Song H; Sun Z Environ Sci Pollut Res Int; 2014 Dec; 21(24):14174-87. PubMed ID: 25056745 [TBL] [Abstract][Full Text] [Related]
19. Comparing the performance of four macrophytes in bacterial assisted floating treatment wetlands for the removal of trace metals (Fe, Mn, Ni, Pb, and Cr) from polluted river water. Shahid MJ; Ali S; Shabir G; Siddique M; Rizwan M; Seleiman MF; Afzal M Chemosphere; 2020 Mar; 243():125353. PubMed ID: 31765899 [TBL] [Abstract][Full Text] [Related]
20. Trace metal concentrations and their transfer from sediment to leaves of four common aquatic macrophytes. Łojko R; Polechońska L; Klink A; Kosiba P Environ Sci Pollut Res Int; 2015 Oct; 22(19):15123-31. PubMed ID: 26004561 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]