These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Subphthalocyanines Axially Substituted with a Tetracyanobuta-1,3-diene-Aniline Moiety: Synthesis, Structure, and Physicochemical Properties. Winterfeld KA; Lavarda G; Guilleme J; Sekita M; Guldi DM; Torres T; Bottari G J Am Chem Soc; 2017 Apr; 139(15):5520-5529. PubMed ID: 28322560 [TBL] [Abstract][Full Text] [Related]
4. Synthesis, Optical Properties, and Fluorescence Cell Imaging of Novel Mixed Fluorinated Subphthalocyanines. Zhou S; Lv X; Li M; Gao Z; Tu S; Qiao S; Mo M; Tang X; Wang Y; Sun S Molecules; 2023 Jan; 28(2):. PubMed ID: 36677782 [TBL] [Abstract][Full Text] [Related]
5. Theoretical design of molecular grippers for anion recognition based on subporphyrazines and subphthalocyanines. Sánchez-Lozano M; Estévez CM; Hermida-Ramón JM Phys Chem Chem Phys; 2014 Apr; 16(13):6108-17. PubMed ID: 24557344 [TBL] [Abstract][Full Text] [Related]
6. Acetylenic scaffolding with subphthalocyanines - synthetic scope and elucidation of electronic interactions in dimeric structures. Gotfredsen H; Broløs L; Holmstrøm T; Sørensen J; Viñas Muñoz A; Kilde MD; Skov AB; Santella M; Hammerich O; Nielsen MB Org Biomol Chem; 2017 Nov; 15(46):9809-9823. PubMed ID: 29019511 [TBL] [Abstract][Full Text] [Related]
7. Peripherally and axially carboxylic acid substituted subphthalocyanines for dye-sensitized solar cells. Ince M; Medina A; Yum JH; Yella A; Claessens CG; Martínez-Díaz MV; Grätzel M; Nazeeruddin MK; Torres T Chemistry; 2014 Feb; 20(7):2016-21. PubMed ID: 24443172 [TBL] [Abstract][Full Text] [Related]
8. Oxidation and reduction data of subphthalocyanines. Swarts PJ; Conradie J Data Brief; 2020 Feb; 28():105039. PubMed ID: 32226808 [TBL] [Abstract][Full Text] [Related]
9. Screening electronic communication through ortho-, meta- and para-substituted linkers separating subphthalocyanines and C60. González-Rodríguez D; Torres T; Herranz MA; Echegoyen L; Carbonell E; Guldi DM Chemistry; 2008; 14(25):7670-9. PubMed ID: 18624288 [TBL] [Abstract][Full Text] [Related]
10. Tuning Optical and Electron Donor Properties by Peripheral Thio-Aryl Substitution of Subphthalocyanine: A New Series of Donor-Acceptor Hybrids for Photoinduced Charge Separation. Kc CB; Lim GN; D'Souza F Chemistry; 2016 Sep; 22(37):13301-11. PubMed ID: 27515576 [TBL] [Abstract][Full Text] [Related]
11. Trifluoroethoxy-coating improves the axial ligand substitution of subphthalocyanine. Shibata N; Das B; Tokunaga E; Shiro M; Kobayashi N Chemistry; 2010 Jul; 16(25):7554-62. PubMed ID: 20486108 [TBL] [Abstract][Full Text] [Related]
13. Photoactive preorganized subphthalocyanine-based molecular tweezers for selective complexation of fullerenes. Zango G; Krug M; Krishna S; Mariñas V; Clark T; Martinez-Diaz MV; Guldi DM; Torres T Chem Sci; 2020 Apr; 11(13):3448-3459. PubMed ID: 34745517 [TBL] [Abstract][Full Text] [Related]
14. Charge separation in graphene-decorated multimodular tris(pyrene)-subphthalocyanine-fullerene donor-acceptor hybrids. Kc CB; Lim GN; D'Souza F Angew Chem Int Ed Engl; 2015 Apr; 54(17):5088-92. PubMed ID: 25726834 [TBL] [Abstract][Full Text] [Related]
15. Cationic Axial Ligand Effects on Sulfur-Substituted Subphthalocyanines. Ogura Y; Nakano M; Maeda H; Segi M; Furuyama T Molecules; 2022 Apr; 27(9):. PubMed ID: 35566117 [TBL] [Abstract][Full Text] [Related]
16. Topological effects of a rigid chiral spacer on the electronic interactions in donor-acceptor ensembles. Guldi DM; Giacalone F; de la Torre G; Segura JL; Martín N Chemistry; 2005 Dec; 11(24):7199-210. PubMed ID: 16163762 [TBL] [Abstract][Full Text] [Related]
17. Effect of Spacer Connecting the Secondary Electron Donor Phenothiazine in Subphthalocyanine-Fullerene Conjugates in Promoting Electron Transfer Followed by Hole Shift Process. Kc CB; Lim GN; D'Souza F Chem Asian J; 2016 Apr; 11(8):1246-56. PubMed ID: 27037628 [TBL] [Abstract][Full Text] [Related]
18. Subphthalocyanines as fluorescence sensors for metal cations. Alfred MA; Lang K; Kirakci K; Stuzhin P; Zimcik P; Labuta J; Novakova V Dalton Trans; 2024 Feb; 53(6):2635-2644. PubMed ID: 38224238 [TBL] [Abstract][Full Text] [Related]
19. The key role of chirality and peripheral substitution in the columnar organization of bowl-shaped subphthalocyanines. Labella J; López-Serrano E; Aranda D; Mayoral MJ; Ortí E; Torres T Chem Sci; 2024 Aug; 15(34):13760-13767. PubMed ID: 39211501 [TBL] [Abstract][Full Text] [Related]
20. Cyclophanes containing bowl-shaped aromatic chromophores: three isomers of anti-[2.2](1,4)subphthalocyaninophane. Liu Q; Shimizu S; Kobayashi N Angew Chem Int Ed Engl; 2015 Apr; 54(17):5187-91. PubMed ID: 25712582 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]