These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
347 related articles for article (PubMed ID: 28717801)
1. Mimicking arterial thrombosis in a 3D-printed microfluidic in vitro vascular model based on computed tomography angiography data. Costa PF; Albers HJ; Linssen JEA; Middelkamp HHT; van der Hout L; Passier R; van den Berg A; Malda J; van der Meer AD Lab Chip; 2017 Aug; 17(16):2785-2792. PubMed ID: 28717801 [TBL] [Abstract][Full Text] [Related]
2. Development of an Experimental and Digital Cardiovascular Arterial Model for Transient Hemodynamic and Postural Change Studies: "A Preliminary Framework Analysis". Hewlin RL; Kizito JP Cardiovasc Eng Technol; 2018 Mar; 9(1):1-31. PubMed ID: 29124548 [TBL] [Abstract][Full Text] [Related]
3. Fabricating self-powered microfluidic devices via 3D printing for manipulating fluid flow. Woo SO; Oh M; Choi Y STAR Protoc; 2022 Jun; 3(2):101376. PubMed ID: 35573475 [TBL] [Abstract][Full Text] [Related]
4. Advancing Tissue Culture with Light-Driven 3D-Printed Microfluidic Devices. Li X; Wang M; Davis TP; Zhang L; Qiao R Biosensors (Basel); 2024 Jun; 14(6):. PubMed ID: 38920605 [TBL] [Abstract][Full Text] [Related]
5. Fabrication routes via projection stereolithography for 3D-printing of microfluidic geometries for nucleic acid amplification. Tzivelekis C; Sgardelis P; Waldron K; Whalley R; Huo D; Dalgarno K PLoS One; 2020; 15(10):e0240237. PubMed ID: 33112867 [TBL] [Abstract][Full Text] [Related]
7. Direct 3D-printing of cell-laden constructs in microfluidic architectures. Liu J; Hwang HH; Wang P; Whang G; Chen S Lab Chip; 2016 Apr; 16(8):1430-8. PubMed ID: 26980159 [TBL] [Abstract][Full Text] [Related]
8. Multi-Resin Masked Stereolithography (MSLA) 3D Printing for Rapid and Inexpensive Prototyping of Microfluidic Chips with Integrated Functional Components. Ahmed I; Sullivan K; Priye A Biosensors (Basel); 2022 Aug; 12(8):. PubMed ID: 36005047 [TBL] [Abstract][Full Text] [Related]
9. Fabrication of a Perfusable 3D In Vitro Artery-Mimicking Multichannel System for Artery Disease Models. Cho M; Park JK ACS Biomater Sci Eng; 2020 Sep; 6(9):5326-5336. PubMed ID: 33455281 [TBL] [Abstract][Full Text] [Related]
10. Elastomeric free-form blood vessels for interconnecting organs on chip systems. Zhang W; Zhang YS; Bakht SM; Aleman J; Shin SR; Yue K; Sica M; Ribas J; Duchamp M; Ju J; Sadeghian RB; Kim D; Dokmeci MR; Atala A; Khademhosseini A Lab Chip; 2016 Apr; 16(9):1579-86. PubMed ID: 26999423 [TBL] [Abstract][Full Text] [Related]
11. Stereolithographic hydrogel printing of 3D culture chips with biofunctionalized complex 3D perfusion networks. Zhang R; Larsen NB Lab Chip; 2017 Dec; 17(24):4273-4282. PubMed ID: 29116271 [TBL] [Abstract][Full Text] [Related]
12. Extrusion-based printing of sacrificial Carbopol ink for fabrication of microfluidic devices. Ozbolat V; Dey M; Ayan B; Ozbolat IT Biofabrication; 2019 Apr; 11(3):034101. PubMed ID: 30884470 [TBL] [Abstract][Full Text] [Related]
13. Emerging 3D printing technologies and methodologies for microfluidic development. Monia Kabandana GK; Zhang T; Chen C Anal Methods; 2022 Aug; 14(30):2885-2906. PubMed ID: 35866586 [TBL] [Abstract][Full Text] [Related]
14. 3D printed mold leachates in PDMS microfluidic devices. de Almeida Monteiro Melo Ferraz M; Nagashima JB; Venzac B; Le Gac S; Songsasen N Sci Rep; 2020 Jan; 10(1):994. PubMed ID: 31969661 [TBL] [Abstract][Full Text] [Related]
15. Microfluidic devices manufacturing with a stereolithographic printer for biological applications. Carnero B; Bao-Varela C; Gómez-Varela AI; Álvarez E; Flores-Arias MT Mater Sci Eng C Mater Biol Appl; 2021 Oct; 129():112388. PubMed ID: 34579907 [TBL] [Abstract][Full Text] [Related]
16. Typography-Like 3D-Printed Templates for the Lithography-Free Fabrication of Microfluidic Chips. Su W; Li Y; Zhang L; Sun J; Liu S; Ding X SLAS Technol; 2020 Feb; 25(1):82-87. PubMed ID: 31381466 [TBL] [Abstract][Full Text] [Related]
17. A biomimetic microfluidic model to study signalling between endothelial and vascular smooth muscle cells under hemodynamic conditions. van Engeland NCA; Pollet AMAO; den Toonder JMJ; Bouten CVC; Stassen OMJA; Sahlgren CM Lab Chip; 2018 May; 18(11):1607-1620. PubMed ID: 29756630 [TBL] [Abstract][Full Text] [Related]
18. Facile Route for 3D Printing of Transparent PETg-Based Hybrid Biomicrofluidic Devices Promoting Cell Adhesion. Mehta V; Vilikkathala Sudhakaran S; Rath SN ACS Biomater Sci Eng; 2021 Aug; 7(8):3947-3963. PubMed ID: 34282888 [TBL] [Abstract][Full Text] [Related]
19. Artificial Vascular with Pressure-Responsive Property based on Deformable Microfluidic Channels. Chen Z; Fan L; Chen S; Zhao H; Zhang Q; Qu Y; Huang Y; Yu X; Sun D Adv Healthc Mater; 2024 Aug; 13(20):e2304532. PubMed ID: 38533604 [TBL] [Abstract][Full Text] [Related]
20. Placenta-on-a-chip: a novel platform to study the biology of the human placenta. Lee JS; Romero R; Han YM; Kim HC; Kim CJ; Hong JS; Huh D J Matern Fetal Neonatal Med; 2016; 29(7):1046-54. PubMed ID: 26075842 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]