BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 28717802)

  • 1. A computational study on the mechanism of ynamide-mediated amide bond formation from carboxylic acids and amines.
    Zhang SL; Wan HX; Deng ZQ
    Org Biomol Chem; 2017 Aug; 15(30):6367-6374. PubMed ID: 28717802
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The aminolysis of N-aroyl beta-lactams occurs by a concerted mechanism.
    Tsang WY; Ahmed N; Page MI
    Org Biomol Chem; 2007 Feb; 5(3):485-93. PubMed ID: 17252131
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanism of arylboronic acid-catalyzed amidation reaction between carboxylic acids and amines.
    Wang C; Yu HZ; Fu Y; Guo QX
    Org Biomol Chem; 2013 Apr; 11(13):2140-6. PubMed ID: 23381564
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The mechanism and structure-activity relationship of amide bond formation by silane derivatives: a computational study.
    Hu B; Jiang YY; Liu P; Zhang RX; Zhang Q; Liu TT; Bi S
    Org Biomol Chem; 2019 Oct; 17(41):9232-9242. PubMed ID: 31599296
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Intermolecular hydroamination of vinylarenes by iminoanilide alkaline-earth catalysts: a computational scrutiny of mechanistic pathways.
    Tobisch S
    Chemistry; 2014 Jul; 20(29):8988-9001. PubMed ID: 24958273
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanism and Rate-Determining Factors of Amide Bond Formation through Acyl Transfer of Mixed Carboxylic-Carbamic Anhydrides: A Computational Study.
    Jiang YY; Liu TT; Zhang RX; Xu ZY; Sun X; Bi S
    J Org Chem; 2018 Mar; 83(5):2676-2685. PubMed ID: 29431998
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanism of Amide Bond Formation from Carboxylic Acids and Amines Promoted by 9-Silafluorenyl Dichloride Derivatives.
    Jiang YY; Zhu L; Liang Y; Man X; Bi S
    J Org Chem; 2017 Sep; 82(17):9087-9096. PubMed ID: 28782365
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanistic Elucidation of Zirconium-Catalyzed Direct Amidation.
    Lundberg H; Tinnis F; Zhang J; Algarra AG; Himo F; Adolfsson H
    J Am Chem Soc; 2017 Feb; 139(6):2286-2295. PubMed ID: 28102675
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Breaking bonds with electrons and protons. Models and examples.
    Costentin C; Robert M; Savéant JM; Tard C
    Acc Chem Res; 2014 Jan; 47(1):271-80. PubMed ID: 24016042
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Computational mechanistic elucidation of the rare earth metal-mediated cycloamidination of aminoalkenes with nitriles.
    Tobisch S
    Dalton Trans; 2018 Sep; 47(35):12264-12272. PubMed ID: 30106411
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Metal-ligand cooperation in catalytic intramolecular hydroamination: a computational study of iridium-pyrazolato cooperative activation of aminoalkenes.
    Tobisch S
    Chemistry; 2012 Jun; 18(23):7248-62. PubMed ID: 22549963
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Boron Ester-Catalyzed Amidation of Carboxylic Acids with Amines: Mechanistic Rationale by Computational Study.
    Jiang YY; Hu B; Xu ZY; Zhang RX; Liu TT; Bi S
    Chem Asian J; 2018 Sep; 13(18):2685-2690. PubMed ID: 29962077
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Ir(COD)Cl]2 as a catalyst precursor for the intramolecular hydroamination of unactivated alkenes with primary amines and secondary alkyl- or arylamines: a combined catalytic, mechanistic, and computational investigation.
    Hesp KD; Tobisch S; Stradiotto M
    J Am Chem Soc; 2010 Jan; 132(1):413-26. PubMed ID: 20000354
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An activated sulfonylating agent that undergoes general base-catalyzed hydrolysis by amines in preference to aminolysis.
    Tsang WY; Ahmed N; Hemming K; Page MI
    J Org Chem; 2008 Jun; 73(12):4504-12. PubMed ID: 18479166
    [TBL] [Abstract][Full Text] [Related]  

  • 15. σ-Insertive Mechanism versus Concerted Non-insertive Mechanism in the Intramolecular Hydroamination of Aminoalkenes Catalyzed by Phenoxyamine Magnesium Complexes: A Synthetic and Computational Study.
    Zhang X; Tobisch S; Hultzsch KC
    Chemistry; 2015 May; 21(21):7841-57. PubMed ID: 25867790
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Probing the Ser-Ser-Lys catalytic triad mechanism of peptide amidase: computational studies of the ground state, transition state, and intermediate.
    Valiña AL; Mazumder-Shivakumar D; Bruice TC
    Biochemistry; 2004 Dec; 43(50):15657-72. PubMed ID: 15595822
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Intramolecular aminoalkene hydroamination mediated by a tethered bis(ureate)zirconium complex: computational perusal of various pathways for aminoalkene activation.
    Tobisch S
    Inorg Chem; 2012 Mar; 51(6):3786-95. PubMed ID: 22372419
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A computational study of the reaction mechanism involved in the fast cleavage of an unconstrained amide bond assisted by an amine intramolecular nucleophilic attack.
    Cuesta SA; Rincón L; Torres FJ; Rodríguez V; Mora JR
    J Comput Chem; 2021 May; 42(12):818-826. PubMed ID: 33590912
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanism of Boron-Catalyzed N-Alkylation of Amines with Carboxylic Acids.
    Zhang Q; Fu MC; Yu HZ; Fu Y
    J Org Chem; 2016 Aug; 81(15):6235-43. PubMed ID: 27441997
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Computational study of the mechanism of amide bond formation via CS
    Jiang YY; Liu TT; Sun X; Xu ZY; Fan X; Zhu L; Bi S
    Org Biomol Chem; 2018 Aug; 16(32):5808-5815. PubMed ID: 30065988
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.